Pregunta
upstudy study bank question image url

6. Find the general solution of \( y^{\prime \prime}-2 y^{\prime}+y=0 \) \[ \begin{array}{l}\text { A. } y(x)=c_{1} e^{x}+c_{2} x e^{x} \\ \text { B. } y(x)=c_{1} e^{x}+c_{2} e^{x} \\ \text { C. } y(x)=c_{1} x+c_{2} x \ln x \\ \text { D. } y(x)=c_{1} x+c_{4} x^{-1}\end{array} \]

Ask by Simmons Cruz. in Ghana
Nov 08,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The general solution is \( y(x) = c_1 e^{x} + c_2 x e^{x} \). Therefore, the correct answer is A.

Solución

To find the general solution of the differential equation \[ y^{\prime \prime} - 2y^{\prime} + y = 0, \] we start by finding the characteristic equation associated with this linear homogeneous differential equation. The characteristic equation is obtained by substituting \( y = e^{rx} \) into the differential equation, leading to: \[ r^2 - 2r + 1 = 0. \] This can be factored as: \[ (r - 1)^2 = 0. \] This indicates that we have a repeated root \( r = 1 \). For a second-order linear differential equation with constant coefficients, if we have a repeated root \( r \), the general solution takes the form: \[ y(x) = (c_1 + c_2 x)e^{rx}. \] Substituting \( r = 1 \), we get: \[ y(x) = (c_1 + c_2 x)e^{x}. \] This can be rewritten as: \[ y(x) = c_1 e^{x} + c_2 x e^{x}. \] Now, we can compare this with the provided options: - A. \( y(x) = c_1 e^{x} + c_2 x e^{x} \) - B. \( y(x) = c_1 e^{x} + c_2 e^{x} \) - C. \( y(x) = c_1 x + c_2 x \ln x \) - D. \( y(x) = c_1 x + c_4 x^{-1} \) The correct answer is: \[ \boxed{A} \] \( y(x) = c_1 e^{x} + c_2 x e^{x} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the differential equation \( y^{\prime \prime}-2 y^{\prime}+y=0 \), we first identify its characteristic equation, which is obtained by assuming a solution of the form \( y = e^{rx} \). Substituting this into the differential equation gives us the characteristic equation \( r^2 - 2r + 1 = 0 \). Factoring this leads to \( (r - 1)^2 = 0 \), indicating a repeated root \( r = 1 \). Hence, the general solution is given by: \[ y(x) = c_{1} e^{x} + c_{2} x e^{x}. \] So, the correct answer is **A**. In the realm of differential equations, recognizing characteristic equations can be a total game-changer! Once you identify them, solutions can often pop right out. And don't forget, when you have repeated roots like in this case, you can snazz up your solution with an extra \( x \) term. Math is all about playing with patterns and discovering the hidden gems! If you love taking a deeper dive into the world of differential equations, there are amazing resources out there! Books like "Differential Equations and Their Applications" by Martin Braun or online platforms like Khan Academy offer great insights and practice problems. Getting comfortable with these kinds of problems will elevate your mathematical prowess—who knows, you might even find yourself tackling more complex systems in no time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad