Responder
The limit is 1.
Solución
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{n\rightarrow +\infty}\left(\frac{\sqrt{4n^{3}-n}}{2n\sqrt{n-1}}\right)\)
- step1: Rewrite the expression:
\(\lim _{n\rightarrow +\infty}\left(\frac{\sqrt{4-\frac{1}{n^{2}}}\times \left|n\right|\times \sqrt{n}}{2\sqrt{1-\frac{1}{n}}\times \left|n\right|\times \sqrt{n}}\right)\)
- step2: Reduce the fraction:
\(\lim _{n\rightarrow +\infty}\left(\frac{\sqrt{4-\frac{1}{n^{2}}}}{2\sqrt{1-\frac{1}{n}}}\right)\)
- step3: Rewrite the expression:
\(\frac{\lim _{n\rightarrow +\infty}\left(\sqrt{4-\frac{1}{n^{2}}}\right)}{\lim _{n\rightarrow +\infty}\left(2\sqrt{1-\frac{1}{n}}\right)}\)
- step4: Calculate:
\(\frac{2}{\lim _{n\rightarrow +\infty}\left(2\sqrt{1-\frac{1}{n}}\right)}\)
- step5: Calculate:
\(\frac{2}{2}\)
- step6: Reduce the numbers:
\(\frac{1}{1}\)
- step7: Calculate:
\(1\)
To evaluate the limit
\[
\lim _{n \rightarrow \infty} \frac{\sqrt{4 n^{3}-n}}{2 n \sqrt{n-1}},
\]
we can simplify the expression step by step.
1. **Analyze the numerator**: The term inside the square root in the numerator is \(4n^3 - n\). As \(n\) approaches infinity, the \(4n^3\) term dominates, so we can approximate:
\[
\sqrt{4n^3 - n} \approx \sqrt{4n^3} = 2n^{3/2}.
\]
2. **Analyze the denominator**: The denominator is \(2n\sqrt{n-1}\). As \(n\) approaches infinity, we can approximate \(\sqrt{n-1}\) as \(\sqrt{n}\):
\[
\sqrt{n-1} \approx \sqrt{n}.
\]
Therefore, the denominator can be approximated as:
\[
2n\sqrt{n-1} \approx 2n\sqrt{n} = 2n^{3/2}.
\]
3. **Combine the approximations**: Now we can rewrite the limit using these approximations:
\[
\lim _{n \rightarrow \infty} \frac{\sqrt{4 n^{3}-n}}{2 n \sqrt{n-1}} \approx \lim _{n \rightarrow \infty} \frac{2n^{3/2}}{2n^{3/2}} = \lim _{n \rightarrow \infty} 1 = 1.
\]
Thus, the final result is:
\[
\lim _{n \rightarrow \infty} \frac{\sqrt{4 n^{3}-n}}{2 n \sqrt{n-1}} = 1.
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución