Here are summary statistics for the weights of Pepsi in randomly selected cans: \( \mathrm{n}=36, \overrightarrow{\mathrm{x}}=0.82411 \mathrm{lb}, \mathrm{s}=0.00566 \mathrm{lb} \). Use a confidence level of \( 90 \% \) to a. Identify the critical value \( \mathrm{t}_{\alpha / 2} \) used for finding the margin of error. \( \mathrm{t}_{\alpha / 2}=1.69 \) (Round to two decimal places as needed.) b. Find the margin of error. \( \mathrm{E}=0.00159 \mathrm{lb} \) (Round to five decimal places as needed.) c. Find the confidence interval estimate of \( \mu \). \( \square \mathrm{lb}<\mu<\square \mathrm{lb} \) (Round to five decimal places as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the confidence interval estimate of \( \mu \), we start with the formula for a confidence interval: \[ \overrightarrow{x} \pm E \] Given that \( \overrightarrow{x} = 0.82411 \, \text{lb} \) and the margin of error \( E = 0.00159 \, \text{lb} \), we can compute the confidence interval: Lower limit: \[ 0.82411 - 0.00159 = 0.82252 \, \text{lb} \] Upper limit: \[ 0.82411 + 0.00159 = 0.82570 \, \text{lb} \] Thus, the confidence interval estimate of \( \mu \) is: \[ 0.82252 \, \text{lb} < \mu < 0.82570 \, \text{lb} \] Make sure you round each endpoint to five decimal places as specified.
