Pregunta
upstudy study bank question image url

A courier service company wishes to estimate the proportion of people in various states that will use its services. Suppose the true proportion is \( 0: 05 \). If 220 are sampled, what is the probability that the sample proportion will differ from the population proportion by greater than 0.04 ? Round your answer to four decimal places.

Ask by Bowman Daniel. in the United States
Nov 10,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that the sample proportion will differ from the population proportion by more than 0.04 is 0.0064.

Solución

To find the probability that the sample proportion will differ from the population proportion by greater than 0.04, we can use the normal approximation to the binomial distribution. Given: - True proportion \( p = 0.05 \) - Sample size \( n = 220 \) First, we calculate the mean and standard deviation of the sample proportion \( \hat{p} \): 1. **Mean of the sample proportion**: \[ \mu_{\hat{p}} = p = 0.05 \] 2. **Standard deviation of the sample proportion**: \[ \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{220}} = \sqrt{\frac{0.05 \times 0.95}{220}} = \sqrt{\frac{0.0475}{220}} \approx \sqrt{0.000215909} \approx 0.0147 \] Next, we want to find the probability that the sample proportion \( \hat{p} \) differs from the population proportion \( p \) by more than 0.04. This means we are looking for: \[ P(|\hat{p} - p| > 0.04) \] This can be rewritten as: \[ P(\hat{p} < 0.01 \text{ or } \hat{p} > 0.09) \] Now we convert these sample proportions to z-scores: 1. For \( \hat{p} < 0.01 \): \[ z_1 = \frac{0.01 - 0.05}{0.0147} \approx \frac{-0.04}{0.0147} \approx -2.7211 \] 2. For \( \hat{p} > 0.09 \): \[ z_2 = \frac{0.09 - 0.05}{0.0147} \approx \frac{0.04}{0.0147} \approx 2.7211 \] Now we can find the probabilities corresponding to these z-scores using the standard normal distribution: - Using a standard normal distribution table or calculator: - \( P(Z < -2.7211) \) gives us the left tail probability. - \( P(Z > 2.7211) = 1 - P(Z < 2.7211) \) gives us the right tail probability. Using a standard normal distribution calculator: - \( P(Z < -2.7211) \approx 0.0032 \) - \( P(Z < 2.7211) \approx 0.9968 \) Thus, \[ P(Z > 2.7211) = 1 - P(Z < 2.7211) \approx 1 - 0.9968 = 0.0032 \] Now, we combine these probabilities: \[ P(|\hat{p} - p| > 0.04) = P(Z < -2.7211) + P(Z > 2.7211) \approx 0.0032 + 0.0032 = 0.0064 \] Finally, rounding to four decimal places, the probability that the sample proportion will differ from the population proportion by greater than 0.04 is: \[ \boxed{0.0064} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that the sample proportion will differ from the population proportion by greater than 0.04, we can use the normal approximation for the sampling distribution of the sample proportion. Given the true proportion \( p = 0.05 \) and the sample size \( n = 220 \), we can calculate the standard deviation of the sampling distribution (standard error) as follows: \[ \sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.05(1-0.05)}{220}} \approx \sqrt{\frac{0.05 \times 0.95}{220}} \approx 0.0106 \] Next, we calculate the z-scores for the sample proportions that differ from \( p \) by more than 0.04. The lower limit for the sample proportion is \( 0.05 - 0.04 = 0.01 \) and the upper limit is \( 0.05 + 0.04 = 0.09 \). Calculating the z-scores: For \( p = 0.01 \): \[ z = \frac{0.01 - 0.05}{0.0106} \approx -3.77 \] For \( p = 0.09 \): \[ z = \frac{0.09 - 0.05}{0.0106} \approx 3.77 \] Now, we can find the probability that the sample proportion lies outside these z-scores. Using the standard normal distribution table or calculator: The probability associated with \( z < -3.77 \) is approximately \( 0.0001 \). The probability associated with \( z > 3.77 \) is also approximately \( 0.0001 \). Adding these two probabilities gives: \[ P(|\hat{p} - p| > 0.04) \approx 0.0001 + 0.0001 = 0.0002 \] Thus, rounding to four decimal places, the result is: \[ \boxed{0.0002} \]

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad