Pregunta
upstudy study bank question image url

1.7 Solve \( \leftarrow \begin{array}{l}\text { Question 7, 1.7.35 } \\ \text { Part } 1 \text { of } 2 \\ \text { Other than a no solution set, use interval notation to express the solution set and then graph the solution set on a number } \\ 8(x+1)+2 \geq 7 x+17 \\ \text { Select the correct choice below and, if necessary, fill in the answer box to complete your choice. } 11 \\ \text { A. The solution is } \square \text {. (Type the solution using interval notation.) } \\ \text { B. The solution set is } \varnothing \text {. }\end{array} \) Save 1 .

Ask by Vargas Brewer. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is [7, ∞).

Solución

To solve the inequality:   8(x + 1) + 2 ≥ 7x + 17 Step 1: Distribute and simplify the left-hand side.   8·x + 8·1 + 2 = 8x + 8 + 2 = 8x + 10 Now the inequality is:   8x + 10 ≥ 7x + 17 Step 2: Get all terms with x on one side by subtracting 7x from both sides.   8x + 10 – 7x ≥ 7x + 17 – 7x Simplify:   x + 10 ≥ 17 Step 3: Isolate x by subtracting 10 from both sides.   x + 10 – 10 ≥ 17 – 10 Simplify:   x ≥ 7 Thus the solution set in interval notation is: [7, ∞). Graphically, on the number line, shade all points starting at 7 (with a closed dot to indicate 7 is included) and extending to the right indefinitely. Select answer choice:   A. The solution is [7, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \(8(x+1) + 2 \geq 7x + 17\), start by simplifying both sides. Expanding the left side gives \(8x + 8 + 2 \geq 7x + 17\), which simplifies to \(8x + 10 \geq 7x + 17\). Subtracting \(7x\) from both sides results in \(x + 10 \geq 17\). From here, you would subtract 10 from both sides, leading to \(x \geq 7\). Thus, in interval notation, the solution is \([7, \infty)\). When you graph this solution on a number line, start at 7 and shade everything to the right, indicating that all numbers greater than or equal to 7 are included in the solution. Use a closed dot on 7 to signify that it’s included in the solution set!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad