Pregunta
upstudy study bank question image url

Llse the shall method to write and evaluate the definite integral that reprecer \[ \begin{array}{l}y=x^{3 / 2} \\ y=27 \\ x\end{array}=0 \]

Ask by Phillips Warren. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{59049\pi}{4} \).

Solución

To set up the definite integral using the shell method for the given curves \( y = x^{3/2} \) and \( y = 27 \), we need to follow these steps: 1. **Identify the region of integration**: We are looking for the area between the curve \( y = x^{3/2} \) and the line \( y = 27 \) from \( x = 0 \) to the point where they intersect. 2. **Find the intersection points**: Set \( x^{3/2} = 27 \) to find the value of \( x \) at which the two curves intersect. 3. **Set up the shell method integral**: The shell method involves integrating with respect to \( y \). The formula for the shell method is: \[ V = 2\pi \int_{a}^{b} (radius)(height) \, dy \] where the radius is the distance from the axis of rotation (in this case, the y-axis) and the height is the difference between the outer and inner functions. 4. **Evaluate the integral**. Let's go through these steps in detail. ### Step 1: Find the intersection points Set \( x^{3/2} = 27 \): \[ x^{3/2} = 27 \] To solve for \( x \), raise both sides to the power of \( \frac{2}{3} \): \[ x = 27^{2/3} \] Calculating \( 27^{2/3} \): \[ 27^{2/3} = (3^3)^{2/3} = 3^2 = 9 \] So, the curves intersect at \( x = 9 \). ### Step 2: Set up the shell method integral The radius of the shell is \( y \) (the distance from the y-axis), and the height of the shell is given by the difference between the line and the curve: \[ \text{Height} = 27 - y^{2/3} \] Thus, the integral becomes: \[ V = 2\pi \int_{0}^{27} y \cdot (27 - y^{2/3}) \, dy \] ### Step 3: Evaluate the integral Now we will evaluate the integral: \[ V = 2\pi \int_{0}^{27} (27y - y^{5/3}) \, dy \] Let's calculate this integral. 1. Calculate the integral of \( 27y \): \[ \int 27y \, dy = \frac{27y^2}{2} \] 2. Calculate the integral of \( y^{5/3} \): \[ \int y^{5/3} \, dy = \frac{y^{8/3}}{8/3} = \frac{3}{8}y^{8/3} \] Now, we can combine these results and evaluate from \( 0 \) to \( 27 \): \[ V = 2\pi \left[ \left( \frac{27y^2}{2} - \frac{3}{8}y^{8/3} \right) \bigg|_{0}^{27} \right] \] Calculating at the upper limit \( y = 27 \): \[ \frac{27(27^2)}{2} - \frac{3}{8}(27^{8/3}) \] Calculating \( 27^2 = 729 \) and \( 27^{8/3} = (27^{2/3})^4 = 9^4 = 6561 \): \[ = \frac{27 \cdot 729}{2} - \frac{3}{8} \cdot 6561 \] Calculating \( \frac{27 \cdot 729}{2} = \frac{19683}{2} \) and \( \frac{3 \cdot 6561}{8} = \frac{19683}{8} \): \[ = \frac{19683}{2} - \frac{19683}{8} \] Finding a common denominator (8): \[ = \frac{19683 \cdot 4}{8} - \frac{19683}{8} = \frac{19683 \cdot 3}{8} = \frac{59049}{8} \] Thus, the volume \( V \) is: \[ V = 2\pi \cdot \frac{59049}{8} = \frac{118098\pi}{8} = \frac{59049\pi}{4} \] ### Final Answer The volume of the solid formed by rotating the region around the y-axis is: \[ V = \frac{59049\pi}{4} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To evaluate the definite integral using the shell method, we first identify the curves involved. Here, the region revolves around the line \(y = 27\). The shell radius is given by \(R = 27 - y = 27 - x^{3/2}\), and the height of the shell is defined by the x-values of the intersection between the curves, which occur from \(x = 0\) to \(x = 27^{2/3}\). The volume \(V\) generated by rotating the region can be expressed as: \[ V = 2\pi \int_0^{27^{2/3}} (27 - x^{3/2}) x \, dx. \] Now to evaluate, we break it down: 1. **Set up the integral:** \[ V = 2\pi \left( \int_0^{27^{2/3}} 27x \, dx - \int_0^{27^{2/3}} x^{5/2} \, dx \right). \] 2. **Calculate each integral:** The first integral: \[ \int 27x \, dx = \frac{27x^2}{2}, \quad \text{evaluated from } 0 \text{ to } 27^{2/3}. \] The second integral: \[ \int x^{5/2} \, dx = \frac{2}{7}x^{7/2}, \quad \text{evaluated from } 0 \text{ to } 27^{2/3}. \] Now plug in \(x = 27^{2/3}\) into both results, and calculate the volume. This gives you the volume of the solid of revolution formed by rotating the area around the specified line!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad