Pregunta
Find the average rate of change of the function \( f(x)=8 x \) from \( x_{1}=0 \) to \( x_{2}=6 \). The average rate of change is \( \square \). (Simplify your answer.)
Ask by Mcfarlane Vargas. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The average rate of change is 8.
Solución
The average rate of change of a function f(x) from x₁ to x₂ is given by the formula:
[f(x₂) − f(x₁)] / (x₂ − x₁).
For the function f(x) = 8x, with x₁ = 0 and x₂ = 6:
f(6) = 8(6) = 48
f(0) = 8(0) = 0
Substitute these values into the formula:
(48 − 0) / (6 − 0) = 48 / 6 = 8
Thus, the average rate of change is 8.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the average rate of change of the function \( f(x) = 8x \) from \( x_1 = 0 \) to \( x_2 = 6 \), we can use the formula: \[ \text{Average Rate of Change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \] Calculating \( f(0) \) and \( f(6) \): \[ f(0) = 8(0) = 0 \] \[ f(6) = 8(6) = 48 \] Now using the average rate of change formula: \[ \text{Average Rate of Change} = \frac{48 - 0}{6 - 0} = \frac{48}{6} = 8 \] Thus, the average rate of change is \( 8 \).
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium