Suppose \( Z \) follows the standard normal distribution. Calculate the following probabilities using the ALEKS calculator. Round your responses to at least three
decimal places.
(a) \( P(Z>-1.83)=\square \)
(b) \( P(Z \leq-1.87)=\square \)
(c) \( P(1.08
Ask by Morrison Pollard. in the United States
Jan 27,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To calculate the probabilities for the standard normal distribution using a calculator or statistical tables, we need to find the corresponding Z-scores: (a) For \( P(Z > -1.83) \): You first find \( P(Z \leq -1.83) \) and then subtract that from 1. Approximately, \( P(Z \leq -1.83) \approx 0.0336 \), so \( P(Z > -1.83) \approx 1 - 0.0336 = 0.9664 \). Therefore, rounding to three decimal places, \( P(Z > -1.83) \approx 0.966 \). (b) For \( P(Z \leq -1.87) \): Looking it up gives \( P(Z \leq -1.87) \approx 0.0307 \). Rounding this value, we get \( P(Z \leq -1.87) \approx 0.031 \). (c) For \( P(1.08 < Z < 2.19) \): Calculate this by finding \( P(Z \leq 2.19) - P(Z \leq 1.08) \). We can approximate \( P(Z \leq 2.19) \approx 0.9857 \) and \( P(Z \leq 1.08) \approx 0.8599 \). So we have \( P(1.08 < Z < 2.19) \approx 0.9857 - 0.8599 = 0.1258 \). Rounding to three decimal places gives us \( P(1.08 < Z < 2.19) \approx 0.126 \). In summary, the rounded probabilities are: (a) \( P(Z > -1.83) \approx 0.966 \) (b) \( P(Z \leq -1.87) \approx 0.031 \) (c) \( P(1.08 < Z < 2.19) \approx 0.126 \)
