The midpoint of \( \overline{B C} \) is \( M(5,4) \). One endpoint is \( B(9,3) \). Find the coordinates of the other endpoint \( C \). Write the coordinates as decimals or integers.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the coordinates of the other endpoint \( C(x, y) \), we can use the midpoint formula, which states that the midpoint \( M \) of a line segment with endpoints \( B(x_1, y_1) \) and \( C(x_2, y_2) \) is given by: \[ M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \] Given that \( M(5, 4) \) is the midpoint and \( B(9, 3) \), we substitute into the formula: \[ 5 = \frac{9 + x}{2} \] \[ 4 = \frac{3 + y}{2} \] Now solving for \( x \) in the first equation: \[ 5 \cdot 2 = 9 + x \implies 10 = 9 + x \implies x = 10 - 9 = 1 \] Now solving for \( y \) in the second equation: \[ 4 \cdot 2 = 3 + y \implies 8 = 3 + y \implies y = 8 - 3 = 5 \] Thus, the coordinates of the other endpoint \( C \) are \( C(1, 5) \).
