Pregunta

Wo parallel sides of an isosceles trapezium are 31 cm and 15 cm. Its non-parallel sides are each 17 cm. Find the area of the trapezium.

Ask by West Dawson. in India
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the trapezium is 345 cm².

Solución

To find the area of the isosceles trapezium, we can use the formula: \[ \text{Area} = \frac{(a + b)}{2} \times h \] where: - \( a \) and \( b \) are the lengths of the parallel sides, - \( h \) is the height of the trapezium. **Given:** - \( a = 31 \) cm (longer parallel side), - \( b = 15 \) cm (shorter parallel side), - The non-parallel sides (legs) are each \( 17 \) cm. **Steps to Find the Height (\( h \)):** 1. **Calculate the difference between the bases:** \[ \text{Difference} = a - b = 31 \, \text{cm} - 15 \, \text{cm} = 16 \, \text{cm} \] 2. **Each non-parallel side forms a right triangle with half of this difference as the base:** \[ \text{Base of right triangle} = \frac{16}{2} = 8 \, \text{cm} \] 3. **Using the Pythagorean theorem to find the height (\( h \)):** \[ h = \sqrt{17^2 - 8^2} = \sqrt{289 - 64} = \sqrt{225} = 15 \, \text{cm} \] **Calculate the Area:** \[ \text{Area} = \frac{(31 + 15)}{2} \times 15 = \frac{46}{2} \times 15 = 23 \times 15 = 345 \, \text{cm}^2 \] **Answer:** The area of the trapezium is 345 cm².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the area of the isosceles trapezium, you can use the formula: Area = \( \frac{1}{2} \times (b_1 + b_2) \times h \) where \( b_1 \) and \( b_2 \) are the lengths of the parallel sides, and \( h \) is the height of the trapezium. First, let's determine the height (h). Since the trapezium is isosceles, we can drop perpendiculars from the top vertices to the line containing the bottom base, creating two right triangles. Let the length of the top base be \( b_1 = 15 \) cm and the bottom base \( b_2 = 31 \) cm. The difference in the lengths of the two bases is \( 31 - 15 = 16 \) cm. Because it's isosceles, the horizontal segments formed at the top from the vertices will each be half of this difference, so each of these segments is \( \frac{16}{2} = 8 \) cm. Now, we can apply the Pythagorean theorem in one of the right triangles formed. Let the length of the non-parallel side be \( 17 \) cm and one leg be \( 8 \) cm. The height \( h \) is our other leg: \[ h^2 + 8^2 = 17^2 \] \[ h^2 + 64 = 289 \] \[ h^2 = 225 \] \[ h = 15 \text{ cm} \] Now plug in the height into the area formula: Area = \( \frac{1}{2} \times (31 + 15) \times 15 \) Area = \( \frac{1}{2} \times 46 \times 15 \) Area = \( 23 \times 15 = 345 \text{ cm}^2 \) So, the area of the trapezium is **345 cm²**.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad