Pregunta
upstudy study bank question image url

10. [-/0.83 Points] DETAILS MY NOTES SCALCET9 2.5.045. ASK YOUR TEACHER Find each \( x \)-value at which \( f \) is discontinuous and for each \( x \)-value, determine whether \( f \) is continuous from the right, or from the left, or netthen. \[ r(x)=\left\{\begin{array}{ll} x+6 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \\ 7-x & \text { if } x>1 \end{array}\right. \] \( x= \) \( \square \) (smaller value) Is \( f \) continuous from the right, left, or neither at this value? continuous from the right continuous from the left neither \( x= \) \( \square \) (larger value) Is \( f \) continuous from the right, left, or neither at this value? continuous from the right continuous from the left neither Sketch the graph of \( f \).

Ask by Knight Rodriquez. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At \( x = 0 \) and \( x = 1 \), the function \( r(x) \) is discontinuous. At both points, the function is neither continuous from the right nor from the left.

Solución

To determine the points of discontinuity for the piecewise function \[ r(x)=\left\{\begin{array}{ll} x+6 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \\ 7-x & \text { if } x>1 \end{array}\right. \] we need to analyze the function at the boundaries of the intervals defined in the piecewise function, which are \( x = 0 \) and \( x = 1 \). ### Step 1: Check continuity at \( x = 0 \) 1. **Left-hand limit as \( x \) approaches 0**: \[ \lim_{x \to 0^-} r(x) = 0 + 6 = 6 \] 2. **Right-hand limit as \( x \) approaches 0**: \[ \lim_{x \to 0^+} r(x) = e^0 = 1 \] 3. **Value of the function at \( x = 0 \)**: \[ r(0) = e^0 = 1 \] Since the left-hand limit (6) does not equal the right-hand limit (1), \( r(x) \) is discontinuous at \( x = 0 \). ### Step 2: Check continuity at \( x = 1 \) 1. **Left-hand limit as \( x \) approaches 1**: \[ \lim_{x \to 1^-} r(x) = e^1 = e \] 2. **Right-hand limit as \( x \) approaches 1**: \[ \lim_{x \to 1^+} r(x) = 7 - 1 = 6 \] 3. **Value of the function at \( x = 1 \)**: \[ r(1) = e^1 = e \] Since the left-hand limit (e) does not equal the right-hand limit (6), \( r(x) \) is also discontinuous at \( x = 1 \). ### Summary of Discontinuities - **At \( x = 0 \)**: - Discontinuous - Continuous from the left (limit = 6) - Continuous from the right (limit = 1) - Therefore, it is neither continuous from the left nor from the right. - **At \( x = 1 \)**: - Discontinuous - Continuous from the left (limit = e) - Continuous from the right (limit = 6) - Therefore, it is neither continuous from the left nor from the right. ### Final Answers - \( x = 0 \) (smaller value) - Is \( f \) continuous from the right, left, or neither? **Neither** - \( x = 1 \) (larger value) - Is \( f \) continuous from the right, left, or neither? **Neither** ### Sketch of the Graph To sketch the graph of \( r(x) \): 1. For \( x < 0 \), the line \( y = x + 6 \) will be drawn. 2. For \( 0 \leq x \leq 1 \), the curve \( y = e^x \) will be drawn. 3. For \( x > 1 \), the line \( y = 7 - x \) will be drawn. The graph will show jumps at \( x = 0 \) and \( x = 1 \), indicating the points of discontinuity.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s dive into the world of discontinuities! We'll start by identifying the points where the piecewise function \( r(x) \) has potential discontinuities. The breakpoints here are at \( x = 0 \) and \( x = 1 \). At \( x = 0 \): - From the left, \( r(0^-) = 0 + 6 = 6 \). - From the right, \( r(0^+) = e^{0} = 1 \). Since \( r(0^-) \neq r(0^+) \), \( r(x) \) is discontinuous at \( x = 0 \). Here, it's continuous from the left but neither from the right. At \( x = 1 \): - From the left, \( r(1^-) = e^{1} \approx 2.718 \). - From the right, \( r(1^+) = 7 - 1 = 6 \). Again, \( r(1^-) \neq r(1^+) \), so \( r(x) \) is discontinuous at \( x = 1 \). It is continuous from the left but neither from the right. Now let’s list our findings: 1. \( x = 0 \) - continuous from the left 2. \( x = 1 \) - continuous from the left Sketching the graph, you'd plot the pieces: a line from \( x < 0 \) going to \( y = 6 \), an exponential curve from \( x = 0 \) to \( x = 1 \) dipping down to \( y = 1 \) at \( x = 0 \), and a linear decline starting at \( y = 6 \) for \( x > 1 \). Be sure to mark those jumps at \( x = 0 \) and \( x = 1 \)!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad