Pregunta
upstudy study bank question image url

Consider the following three systems of linear equations. \[ \begin{array}{c} \text { System A } \\ \left\{\begin{array} { c } { - 4 x + 3 y = 2 3 [ \mathrm { A } 1 ] } \\ { 2 x - 7 y = 5 } \end{array} \left\{\begin{array}{c} -11 y=33[\mathrm{~B} 1] \\ 2 x-7 y=5[\mathrm{~B} 2] \end{array}\left\{\begin{array}{c} y=-3 \\ 2 x-7 y=5[\mathrm{C} 1] \end{array}\right]\right.\right. \end{array} \] Answer the questions below. For each, choose the transformation and then fill in the blank with the correct number. The arrow ( \( \rightarrow \) ) means the expression on the left becomes the expression on the right. (a) How do we transform System A into System B? \( \square \) \( \times \) Equation \( [\mathrm{A} 1] \rightarrow \) Equation \( [\mathrm{B} 1] \) \( \square \) \( \times \) Equation \( [\mathrm{A} 2] \rightarrow \) Equation [B2] \( \square \) \( \times \) Equation \( [\mathrm{A} 1]+ \) Equation \( [\mathrm{A} 2] \rightarrow \) Equation \( [\mathrm{B} 2] \) \( \square \) \( \times \) Equation \( [\mathrm{A} 2]+ \) Equation \( [\mathrm{A} 1] \rightarrow \) Equation \( [\mathrm{B} 1] \) (b) How do we transform System B into System C? \( \square \) \( \times \) Equation \( [\mathrm{B} 1] \rightarrow \) Equation [C1] \( \square \) \( \times \) Equation [B2] \( \rightarrow \) Equation [C2] \( ] \times \) Equation \( [\mathrm{B} 1]+ \) Equation \( [\mathrm{B} 2] \rightarrow \) Equation [C2] \( \square \) \( \times \) Equation \( [B 2]+ \) Equation \( [B 1] \rightarrow \) Equation \( [C 1] \)

Ask by Todd Wells. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) To transform System A into System B: - Multiply Equation [A2] by 2 and add it to Equation [A1] to get Equation [B1]. - Equation [A2] remains unchanged to become Equation [B2]. (b) To transform System B into System C: - Multiply Equation [B1] by –1/11 to get Equation [C1]. - Equation [B2] remains unchanged to become Equation [C2].

Solución

We wish to obtain System B from System A and then System C from System B by doing simple algebraic manipulations. (Note that all the “×” signs in the options indicate you are multiplying one equation by a constant and possibly then adding another equation.) ────────────────────────────── Step 1. Transforming System A into System B System A is:   [A1]: –4x + 3y = 23   [A2]: 2x – 7y = 5 System B is:   [B1]: –11y = 33   [B2]: 2x – 7y = 5 Notice that B2 is the same as A2 (so it is unchanged) and that B1 is an equation with just y. In fact, you can “eliminate” the x‐term from A1 and A2 as follows. Multiply A2 by 2:   2 × (2x – 7y) = 4x – 14y  with right side 2×5 = 10. Now add this to A1:   [–4x + 3y] + [4x – 14y] = (–4x + 4x) + (3y – 14y) = –11y,   and 23 + 10 = 33. Thus we have obtained –11y = 33, which is exactly B1. So the transformation for part (a) is:   • 2 × Equation [A2] + Equation [A1] → Equation [B1]   • 1 × Equation [A2] → Equation [B2] That is, you use “2 × [A2] + [A1] → [B1]” and leave A2 as it is for [B2]. ────────────────────────────── Step 2. Transforming System B into System C System B is:   [B1]: –11y = 33   [B2]: 2x – 7y = 5 System C is:   [C1]: y = –3   [C2]: 2x – 7y = 5 Clearly, C2 is identical to B2. For C1, we solve B1 for y by multiplying by –1/11:   (–1/11)×(–11y) = y  and (–1/11)×33 = –3. Thus the transformation for part (b) is:   • (–1/11) × Equation [B1] → Equation [C1]   • 1 × Equation [B2] → Equation [C2] ────────────────────────────── Final Answers (a) To go from System A to System B:   – Multiply Equation [A2] by 2 and add it to Equation [A1] to get Equation [B1];   – Equation [A2] is unchanged (i.e. multiplied by 1) to give Equation [B2]. (b) To go from System B to System C:   – Multiply Equation [B1] by –1/11 to get Equation [C1];   – Equation [B2] is unchanged (i.e. multiplied by 1) to yield Equation [C2].

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To transform System A into System B, you can scale Equation \([A 1]\) by \(-\frac{11}{4}\) to yield Equation \([B 1]\), which leads to: \(-\frac{11}{4} \times \text{Equation } [A 1] \rightarrow \text{Equation } [B 1]\). For the second equation, you multiply \([A 2]\) by \(1\) (it remains unchanged) to get: \(1 \times \text{Equation } [A 2] \rightarrow \text{Equation } [B 2]\). Now, to transform System B into System C, you can resolve Equation \([B 1]\) to find \(y = -3\): \(1 \times \text{Equation } [B 1] \rightarrow \text{Equation } [C 1]\). After substituting \(y = -3\) into Equation \([B 2]\), you'll find the corresponding relationship which doesn’t change, indicating that the transformations are straightforward: \(1 \times \text{Equation } [B 2] \rightarrow \text{Equation } [C 2]\).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad