Pregunta
upstudy study bank question image url

The Miller's are saving up to go on a family vacation in 3 years. They invest \( \$ 2300 \) in an account with an annual interest rate of \( 1.37 \% \). Assuming no withdrawals are made, how much is in the Miller's account after 3 years? Round to the nearest cent. Part 2 of 2 How much interest is earned on the Miller's investment after 3 years? Round to the nearest cent.

Ask by Tucker Norris. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 3 years, the Miller's account will have approximately \$2,395.83. The interest earned is approximately \$95.83.

Solución

We start with an initial deposit (P) of $2,300 and an annual interest rate (r) of 1.37% (written as 0.0137). Since the interest is compounded annually over 3 years (n = 3), the balance (A) is given by the formula:   A = P(1 + r)ⁿ Step 1. Plug in the given numbers:   A = 2300(1 + 0.0137)³     = 2300(1.0137)³ Step 2. Calculate (1.0137)³. A quick way is to use the binomial expansion:   (1.0137)³ = 1 + 3(0.0137) + 3(0.0137)² + (0.0137)³ First, calculate the components:   3(0.0137) = 0.0411   (0.0137)² ≈ 0.00018769, so 3(0.0137)² ≈ 0.00056307   (0.0137)³ ≈ 0.00000257 Now add these to 1:   1 + 0.0411 + 0.00056307 + 0.00000257 ≈ 1.04166564 Step 3. Multiply by the principal:   A ≈ 2300 × 1.04166564   A ≈ 2395.83 Thus, after 3 years the Miller’s account will have approximately $2,395.83. Step 4. To find the interest earned, subtract the principal from the final amount:   Interest = A - P     = 2395.83 - 2300     ≈ $95.83 Final Answers: Part 1: After 3 years, the account holds approximately $2,395.83. Part 2: The interest earned over 3 years is approximately $95.83.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much money the Miller's will have in their account after 3 years, we can use the formula for compound interest: \[ A = P(1 + r)^t \] where - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the number of years the money is invested or borrowed. In this case: - \( P = 2300 \) - \( r = 0.0137 \) (1.37% expressed as a decimal) - \( t = 3 \) Now substituting in the values: \[ A = 2300(1 + 0.0137)^3 \] \[ A = 2300(1.0137)^3 \] \[ A = 2300 \times 1.041588 \] \[ A \approx 2395.64 \] So, the amount in the Miller's account after 3 years is approximately **$2395.64**. To find the interest earned, simply subtract the principal from the final amount: Interest = \( A - P \) Interest = \( 2395.64 - 2300 \) Interest = \( 95.64 \) So, the total interest earned on the Miller's investment after 3 years is approximately **$95.64**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad