possible A ball is thrown directly upward from a height of 8 ft with an initial velocity of \( 20 \mathrm{ft} / \mathrm{sec} \). The function \( s(t)=-16 \mathrm{t}^{2}+20 \mathrm{t}+8 \) gives the height of the ball, in feet, \( t \) seconds after it has been thrown. Determine the time at which the ball reaches its maximum height and find the maximum height.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the time at which the ball reaches its maximum height, we can use the vertex formula for a quadratic equation. The time at which the maximum height occurs is given by \( t = -\frac{b}{2a} \), where \( a \) and \( b \) are the coefficients from the equation \( s(t) = -16t^2 + 20t + 8 \). Here, \( a = -16 \) and \( b = 20 \). Calculating this gives: \[ t = -\frac{20}{2 \times -16} = \frac{20}{32} = \frac{5}{8} \, \text{seconds} \] To find the maximum height, substitute \( t = \frac{5}{8} \) back into the height equation: \[ s\left(\frac{5}{8}\right) = -16\left(\frac{5}{8}\right)^2 + 20\left(\frac{5}{8}\right) + 8 \] \[ = -16 \times \frac{25}{64} + 20 \times \frac{5}{8} + 8 \] \[ = -\frac{400}{64} + \frac{100}{8} + 8 \] \[ = -\frac{400}{64} + \frac{800}{64} + \frac{512}{64} \] \[ = \frac{912 - 400}{64} = \frac{512}{64} = 8 \] So, the maximum height is \( 8 \, \text{ft} \) and it occurs at \( t = \frac{5}{8} \, \text{seconds} \).
