Pregunta
upstudy study bank question image url

0.4 = Sampling Cuestion 7,5.4.37-T \( 1 \in \) Part 1 of 2 The lengths of lumber a machine cuts are normally distributed with a mean of 87 inches and a standard deviation of 0.4 inch. (a) What is the probability that a randomly selected board cut by the machine has a length greater than 87.11 inches? \( 60.42 \%, 4.83 \) of 8 points (b) A sample of 44 boards is randomly selected. What is the probability that their mean length is greater than 87.11 inches? (a) The probability is \( \square \). (Round to four decimal places as needed.)

Ask by Osborne Ball. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The probability that a randomly selected board is longer than 87.11 inches is approximately 0.3914. (b) The probability that the mean length of 44 randomly selected boards is greater than 87.11 inches is approximately 0.0340.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To solve part (a), we need to find the probability that a randomly selected board cut by the machine has a length greater than 87.11 inches using the properties of the normal distribution. First, we need to standardize the value using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] Where: - \( X = 87.11 \) inches (the value we are comparing) - \( \mu = 87 \) inches (the mean) - \( \sigma = 0.4 \) inches (the standard deviation) Plugging in the values: \[ Z = \frac{87.11 - 87}{0.4} = \frac{0.11}{0.4} = 0.275 \] Next, we need to find the probability corresponding to a Z-score of 0.275. Using the standard normal distribution table or calculator, we find: P(Z > 0.275) = 1 - P(Z < 0.275) Looking up the Z-score of 0.275, we find P(Z < 0.275) ≈ 0.6103. Hence, P(Z > 0.275) ≈ 1 - 0.6103 = 0.3897. So, rounding to four decimal places, the probability is **0.3897**. For part (b), we want to determine the probability that the mean length of a sample of 44 boards is greater than 87.11 inches. We will use the Central Limit Theorem here, which states that the sampling distribution of the sample mean will be normally distributed with: Mean \( \mu_{\bar{X}} = \mu = 87 \) inches Standard deviation \( \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{0.4}{\sqrt{44}} \approx 0.0603 \) inches Now, we use the Z-score formula again. \[ Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{87.11 - 87}{0.0603} \] Calculating this: \[ Z = \frac{0.11}{0.0603} \approx 1.826 \] Then we can find the probability: P(Z > 1.826) = 1 - P(Z < 1.826) Looking up the Z-score of 1.826, we find P(Z < 1.826) ≈ 0.9651. Thus, P(Z > 1.826) ≈ 1 - 0.9651 = 0.0349. So for part (b), the probability that the mean length of the sample of boards is greater than 87.11 inches is approximately **0.0349** (rounded to four decimal places). In summary: (a) The probability is **0.3897**. (b) The probability is **0.0349**.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad