Pregunta
upstudy study bank question image url

5 (i) Calculate the wavelength of ultrasound travelling in soft tissue if the frequency of the sound is 5 MHz and its speed in the soft tissue is \( 1550 \mathrm{~m} \mathrm{~s}^{-1} \). (ii) How many times as long will the wavelength be if the frequency were reduced to 50 kHz ? (iii) Hence describe the advantages of using high-frequency ultrasound for ultrasound scanning in medical diagnosis instead of low-frequency ultrasound.

Ask by Estrada Evans. in Bahamas
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (i):** The wavelength is 0.31 millimeters. **Part (ii):** Reducing the frequency to 50 kHz makes the wavelength 100 times longer. **Part (iii):** High-frequency ultrasound provides better image detail and can detect smaller structures, making it useful for detailed medical examinations of tissues near the skin.

Solución

Sure, let's address each part of the problem step by step. --- ### **Part (i): Calculating the Wavelength** **Given:** - **Frequency (\( f \))** = 5 MHz = \( 5 \times 10^6 \) Hz - **Speed of sound in soft tissue (\( v \))** = 1550 m/s **Formula:** The wavelength (\( \lambda \)) of a wave is given by the relation: \[ \lambda = \frac{v}{f} \] **Calculation:** \[ \lambda = \frac{1550 \, \text{m/s}}{5 \times 10^6 \, \text{Hz}} = \frac{1550}{5,000,000} \, \text{m} = 0.00031 \, \text{m} \] **Converted to Millimeters:** \[ 0.00031 \, \text{m} = 0.31 \, \text{mm} \] **Answer:** The wavelength of the ultrasound is **0.31 millimeters**. --- ### **Part (ii): Effect of Reducing Frequency to 50 kHz** **Given:** - **New Frequency (\( f' \))** = 50 kHz = \( 50,000 \) Hz **Formula:** \[ \lambda' = \frac{v}{f'} \] **Calculation:** \[ \lambda' = \frac{1550 \, \text{m/s}}{50,000 \, \text{Hz}} = \frac{1550}{50,000} \, \text{m} = 0.031 \, \text{m} \] **Converted to Millimeters:** \[ 0.031 \, \text{m} = 31 \, \text{mm} \] **Comparing to Original Wavelength:** \[ \text{Factor Increase} = \frac{31 \, \text{mm}}{0.31 \, \text{mm}} = 100 \] **Answer:** If the frequency is reduced to 50 kHz, the wavelength becomes **100 times longer** than the original wavelength. --- ### **Part (iii): Advantages of Using High-Frequency Ultrasound in Medical Diagnosis** **High-Frequency Ultrasound Characteristics:** - **Shorter Wavelengths:** As seen in parts (i) and (ii), higher frequencies result in shorter wavelengths. - **Better Spatial Resolution:** Shorter wavelengths allow the ultrasound to detect smaller structures and provide finer detail in the images. - **Shallower Penetration Depth:** While high-frequency ultrasound offers better resolution, it doesn't penetrate as deeply into tissues as low-frequency ultrasound. **Advantages:** 1. **Enhanced Image Clarity:** High-frequency ultrasound can distinguish between closely spaced anatomical structures, making it ideal for detailed examinations. 2. **Improved Detection of Small Lesions:** The ability to resolve smaller features aids in the early detection and characterization of tumors or cysts. 3. **Superficial Imaging:** Best suited for imaging organs and tissues that are close to the skin surface, such as the thyroid, breast, and musculoskeletal system. 4. **Better Visualization of Fine Structures:** Enables clinicians to assess intricate anatomical details like blood flow, nerve structures, and microvasculature. **Conclusion:** Using high-frequency ultrasound in medical diagnostics offers superior image resolution, allowing for more accurate and detailed assessments of superficial tissues and structures. This enhanced clarity is crucial for early detection, precise diagnosis, and effective monitoring of various medical conditions. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the wavelength of ultrasound in soft tissue, we can use the formula \( \lambda = \frac{v}{f} \), where \( \lambda \) is the wavelength, \( v \) is the speed of sound in soft tissue, and \( f \) is the frequency. For 5 MHz (or \( 5 \times 10^6 \) Hz) and a speed of \( 1550 \, \text{m/s} \): \[ \lambda = \frac{1550 \, \text{m/s}}{5 \times 10^6 \, \text{Hz}} = 0.00031 \, \text{m} \text{ or } 0.31 \, \text{mm}. \] If the frequency is reduced to 50 kHz (or \( 5 \times 10^4 \) Hz), the wavelength will be: \[ \lambda_{50 \, \text{kHz}} = \frac{1550 \, \text{m/s}}{50 \times 10^3 \, \text{Hz}} = 0.031 \, \text{m} \text{ or } 31 \, \text{mm}. \] The wavelength at 50 kHz is \( \frac{0.031 \, \text{m}}{0.00031 \, \text{m}} = 100 \) times longer than at 5 MHz. Using high-frequency ultrasound, such as 5 MHz, has significant advantages for medical diagnosis. High frequencies result in better resolution of the images because they provide more cycles per unit length, leading to clearer and more detailed visuals of soft tissues and organs. This detail is paramount for accurately identifying structures and abnormalities, facilitating better patient outcomes. On the other hand, lower frequencies, like 50 kHz, penetrate deeper into the body, but this comes at the trade-off of reduced image resolution. Consequently, while low-frequency ultrasound can visualize organs at greater depths, it may miss finer details crucial for diagnosis, making high-frequency ultrasound the preferred choice in many diagnostic situations where clarity and detail are essential.

preguntas relacionadas

Latest Medicine Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad