Pregunta
upstudy study bank question image url

.3 Determine, without the use of a calculator, between which two .4 Prove that 0.43 is rational. .5 Use this format \( : \frac{a^{2}-1}{a-1} \) to simplify the expression, WITHOUT using calculator: \( \frac{2024}{44} \)

Ask by Montgomery Li. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- √2024 is between 44 and 45. - 0.43 is a rational number because it equals 43/100. - 2024 divided by 44 simplifies to 46.

Solución

Below are solutions to each part: ───────────────────────────── Part .3 It appears the intended question is to determine (without a calculator) between which two consecutive integers the square root of 2024 lies. Notice that   44² = 1936  and  45² = 2025. Since   1936 < 2024 < 2025, we have   44 < √2024 < 45. Thus, √2024 lies between 44 and 45. ───────────────────────────── Part .4 To prove that 0.43 is rational, recall that a number is rational if it can be written as a fraction of two integers. Since 0.43 is a terminating decimal, we can write it as   0.43 = 43/100. Both 43 and 100 are integers, so 0.43 is a rational number. ───────────────────────────── Part .5 We are asked to simplify   2024/44 using the format   (a² – 1)/(a – 1). Observe that   45² = 2025 → 45² – 1 = 2025 – 1 = 2024, and also notice that   45 – 1 = 44. Thus, we can express   2024/44 = (45² – 1)/(45 – 1). Now, factor the numerator using the difference of squares formula:   a² – 1 = (a – 1)(a + 1). Taking a = 45, we have:   (45² – 1)/(45 – 1) = [(45 – 1)(45 + 1)]/(45 – 1). Canceling the common factor (45 – 1) (which is valid since 45 – 1 ≠ 0), we obtain:   45 + 1 = 46. Thus, 2024/44 simplifies exactly to 46. ───────────────────────────── Summary of Answers: • Part .3: √2024 lies between 44 and 45. • Part .4: 0.43 = 43/100, so it is rational. • Part .5: 2024/44 simplifies to 46.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine between which two integers the decimal 0.3 lies, you can simply observe that it is greater than 0 but less than 1. So, you can confidently say it’s between 0 and 1! To prove that 0.43 is a rational number, remember that a number is rational if it can be expressed as the ratio of two integers. Since 0.43 can be written as \( \frac{43}{100} \), where both 43 and 100 are integers, it is indeed a rational number. To simplify the expression \( \frac{2024}{44} \), we first find the greatest common divisor (GCD) of 2024 and 44. Dividing both by 44, we get \( \frac{46}{1} \), leading us to conclude that \( \frac{2024}{44} = 46 \) after simplifying!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad