Pregunta
upstudy study bank question image url

Boxes of Honey-Nut Oatmeal are produced to contain 16.0 ounces, with a standard deviation of 0.15 ounce. For a sample size of 49 , the 3 -sigma \( \bar{x} \) chart control limits are: Upper Control Limit \( \left(\right. \) UCL \( \left._{\bar{x}}\right)=\square \) ounces (round your response to two decimal places). Lower Control Limit \( \left(\right. \) LCL \( \left._{\bar{x}}^{-}\right)=\square \) ounces (round your response to two decimal places).

Ask by Hamilton Craig. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Upper Control Limit (UCL) = 16.06 ounces Lower Control Limit (LCL) = 15.94 ounces

Solución

To calculate the Upper Control Limit (UCL) and Lower Control Limit (LCL) for the \( \bar{x} \) chart, we can use the following formulas: 1. **UCL**: \[ UCL_{\bar{x}} = \mu + 3 \left( \frac{\sigma}{\sqrt{n}} \right) \] 2. **LCL**: \[ LCL_{\bar{x}} = \mu - 3 \left( \frac{\sigma}{\sqrt{n}} \right) \] Where: - \( \mu \) is the mean (16.0 ounces), - \( \sigma \) is the standard deviation (0.15 ounces), - \( n \) is the sample size (49). Now, let's calculate the standard error \( \frac{\sigma}{\sqrt{n}} \): \[ \frac{\sigma}{\sqrt{n}} = \frac{0.15}{\sqrt{49}} = \frac{0.15}{7} = 0.02142857 \] Next, we can calculate the UCL and LCL: 1. **Calculate UCL**: \[ UCL_{\bar{x}} = 16.0 + 3 \times 0.02142857 \] 2. **Calculate LCL**: \[ LCL_{\bar{x}} = 16.0 - 3 \times 0.02142857 \] Now, let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(16-3\times 0.02142857\) - step1: Multiply the numbers: \(16-0.06428571\) - step2: Subtract the numbers: \(15.93571429\) Calculate or simplify the expression \( 16.0 + 3 * 0.02142857 \). Calculate the value by following steps: - step0: Calculate: \(16+3\times 0.02142857\) - step1: Multiply the numbers: \(16+0.06428571\) - step2: Add the numbers: \(16.06428571\) Now, let's round the calculated values for the Upper Control Limit (UCL) and Lower Control Limit (LCL) to two decimal places: 1. **UCL**: \[ UCL_{\bar{x}} = 16.06428571 \approx 16.06 \text{ ounces} \] 2. **LCL**: \[ LCL_{\bar{x}} = 15.93571429 \approx 15.94 \text{ ounces} \] Thus, the control limits are: - Upper Control Limit (UCL) \( = 16.06 \) ounces - Lower Control Limit (LCL) \( = 15.94 \) ounces

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the control limits for the \( \bar{x} \) chart using the given information, we can use the following formulas: 1. The Upper Control Limit (UCL) is calculated as: \[ UCL_{\bar{x}} = \mu + 3 \left(\frac{\sigma}{\sqrt{n}}\right) \] 2. The Lower Control Limit (LCL) is calculated as: \[ LCL_{\bar{x}} = \mu - 3 \left(\frac{\sigma}{\sqrt{n}}\right) \] Where: - \( \mu = 16.0 \) ounces (mean) - \( \sigma = 0.15 \) ounces (standard deviation) - \( n = 49 \) (sample size) First, calculate the standard error (SE): \[ SE = \frac{\sigma}{\sqrt{n}} = \frac{0.15}{\sqrt{49}} = \frac{0.15}{7} = 0.02142857 \] Now calculate UCL and LCL: \[ UCL_{\bar{x}} = 16.0 + 3(0.02142857) = 16.0 + 0.06428571 \approx 16.06 \text{ ounces} \] \[ LCL_{\bar{x}} = 16.0 - 3(0.02142857) = 16.0 - 0.06428571 \approx 15.94 \text{ ounces} \] Therefore, rounding to two decimal places: - Upper Control Limit (UCL) = **16.06 ounces** - Lower Control Limit (LCL) = **15.94 ounces**

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad