Pregunta
upstudy study bank question image url

The deriations from the mean of a set of numbers are \( (k-13)^{2},(k+7) \); \( -2, k \) and \( (k+2)^{2} \), Where \( k \) is a constant. Find the value of \( k \) if the mean deviation

Ask by Goodwin Stanley. in Ghana
Feb 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( k = 5 \)

Solución

To find the value of \( k \) given the deviations from the mean, we need to set up the equation for the mean deviation. The mean deviation is the average of the absolute deviations from the mean. The deviations from the mean are given as: 1. \( (k-13)^{2} \) 2. \( (k+7) \) 3. \( -2 \) 4. \( k \) 5. \( (k+2)^{2} \) Let's denote the deviations as \( d_1, d_2, d_3, d_4, d_5 \): - \( d_1 = (k-13)^{2} \) - \( d_2 = (k+7) \) - \( d_3 = -2 \) - \( d_4 = k \) - \( d_5 = (k+2)^{2} \) The mean deviation \( M \) can be calculated as: \[ M = \frac{1}{n} \sum_{i=1}^{n} |d_i| \] where \( n \) is the number of deviations. In this case, \( n = 5 \). Therefore, we need to calculate: \[ M = \frac{1}{5} \left( |(k-13)^{2}| + |(k+7)| + |-2| + |k| + |(k+2)^{2}| \right) \] Since all terms are non-negative, we can drop the absolute value signs: \[ M = \frac{1}{5} \left( (k-13)^{2} + (k+7) + 2 + k + (k+2)^{2} \right) \] Now, let's simplify this expression step by step. 1. Calculate \( (k-13)^{2} \): \[ (k-13)^{2} = k^{2} - 26k + 169 \] 2. Calculate \( (k+2)^{2} \): \[ (k+2)^{2} = k^{2} + 4k + 4 \] 3. Combine all terms: \[ M = \frac{1}{5} \left( (k^{2} - 26k + 169) + (k + 7) + 2 + k + (k^{2} + 4k + 4) \right) \] Combine like terms: \[ = \frac{1}{5} \left( 2k^{2} - 20k + 182 \right) \] Now, we can set the mean deviation \( M \) equal to a specific value if provided, or we can solve for \( k \) if we have additional conditions. However, since the problem does not specify a value for the mean deviation, we will need to find \( k \) such that the mean deviation is minimized or equals zero. Let's assume we want to find \( k \) such that the mean deviation is minimized. We can set the derivative of \( M \) with respect to \( k \) to zero and solve for \( k \). Let's calculate the derivative of \( M \) and set it to zero. The expression for \( M \) is: \[ M = \frac{1}{5} \left( 2k^{2} - 20k + 182 \right) \] Taking the derivative: \[ \frac{dM}{dk} = \frac{1}{5} (4k - 20) \] Setting the derivative to zero: \[ 4k - 20 = 0 \] Solving for \( k \): \[ 4k = 20 \implies k = 5 \] Now, let's confirm that this value of \( k \) is indeed a minimum by checking the second derivative: \[ \frac{d^2M}{dk^2} = \frac{1}{5} \cdot 4 = \frac{4}{5} > 0 \] Since the second derivative is positive, \( k = 5 \) is a minimum. Thus, the value of \( k \) is: \[ \boxed{5} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for \( k \), we first need to take the mean deviation formula into account, which is defined as the average of the absolute deviations from the mean. The given deviations from the mean are: 1. \( (k-13)^2 \) 2. \( (k+7) \) 3. \( -2 \) 4. \( k \) 5. \( (k+2)^2 \) To find \( k \), we set up the equation by summing the deviations and dividing by the number of terms, which is 5: \[ \text{Mean Deviation} = \frac{(k-13)^2 + (k+7) + (-2) + k + (k+2)^2}{5} \] Since we need the mean deviation to be equal to zero for the mean itself to lie at the center (given that some deviations are negative), we can equate the sum of deviations to zero and solve for \( k \). Let's sum everything: \[ (k-13)^2 + (k+7) - 2 + k + (k+2)^2 = 0 \] Expanding and combining like terms: 1. \( (k-13)^2 = k^2 - 26k + 169 \) 2. \( (k+2)^2 = k^2 + 4k + 4 \) Combining: \[ k^2 - 26k + 169 + k + 7 - 2 + k + k^2 + 4k + 4 = 0 \] \[ 2k^2 - 20k + 178 = 0 \] Now solve this quadratic equation using the quadratic formula: \[ k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a = 2 \), \( b = -20 \), and \( c = 178 \): \[ b^2 - 4ac = (-20)^2 - 4 \cdot 2 \cdot 178 = 400 - 1424 = -1024 \] Since the discriminant is negative, there are no real solutions for \( k \). Hence, we may review the derivation steps or conditions for any further assumptions or evaluations for potential complex outcomes. This mathematical scenario teaches us the value of checking our steps as much as we strive for resolution in deriving unknowns! Happy problem-solving!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad