Pregunta
upstudy study bank question image url

Use the rational zeros theorem to list the potential rational zeros of the polynomial function. Do not attempt to find the zeros. \[ f(x)=-169 x^{7}-x^{6}+x+13 \] Find the potential rational zeros. Choose the correct answer below. O A. \( -1,1,-13,13,-\frac{1}{13}, \frac{1}{13},-\frac{1}{169}, \frac{1}{169} \) B. \( -1,1,-169,169,-\frac{1}{13}, \frac{1}{13},-\frac{1}{169}, \frac{1}{169} \) 45 C. \( -1,1,-13,13,-\frac{1}{13}, \frac{1}{13} \) OD. \( -1,1,-13,13,-169,169,-\frac{1}{13}, \frac{1}{13},-\frac{1}{169}, \frac{1}{169} \)

Ask by Rowe Tucker. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The potential rational zeros are: -1, 1, -13, 13, -1/13, 1/13, -1/169, 1/169.

Solución

Recall that the Rational Zeros Theorem states that all possible rational zeros of a polynomial   f(x) = aₙxⁿ + ⋯ + a₀ are of the form   p/q where p is a factor of the constant term (a₀) and q is a factor of the leading coefficient (aₙ). For the polynomial   f(x) = -169x⁷ - x⁶ + x + 13 the constant term is 13 and the leading coefficient is -169. Step 1. List the factors of the constant term 13:  Possible p values: ±1, ±13 Step 2. List the factors of the leading coefficient -169.  Remember, 169 = 13², so the factors are:   Possible q values: ±1, ±13, ±169 Step 3. Form all fractions ±(factor of constant)/(factor of leading coefficient): Potential zeros = ±1/1, ±13/1, ±1/13, ±13/13, ±1/169, ±13/169 Simplify these: • 1/1 = 1 and 13/1 = 13 • 13/13 simplifies to 1 (so it’s not new) • 13/169 simplifies to 1/13 (so it’s already listed) Thus, the distinct potential rational zeros are:   ±1, ±13, ±1/13, and ±1/169 Looking at the provided options, Option A lists exactly these:   -1, 1, -13, 13, -1/13, 1/13, -1/169, 1/169 Therefore, the correct answer is Option A.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the potential rational zeros of the polynomial function \( f(x) = -169x^7 - x^6 + x + 13 \), we can use the Rational Zeros Theorem. First, we identify the factors of the constant term (13) and the leading coefficient (-169). The factors of 13 are \( \pm 1, \pm 13 \) and the factors of -169 are \( \pm 1, \pm 13, \pm 169 \). By creating a ratio of these factors, we can compile all potential rational zeros: The potential rational zeros are \( -1, 1, -13, 13, -169, 169, -\frac{1}{13}, \frac{1}{13}, -\frac{1}{169}, \frac{1}{169} \). It’s always a good idea to double-check your computations. The Rational Zeros Theorem is a powerful tool, but it’s not foolproof, and potential zeros might not always work out as actual zeros. Remember, just because they’re potential doesn't mean they’re guaranteed to be the winning lottery numbers—all rats have their holes, and zeros have their quirks!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad