Pregunta
upstudy study bank question image url

The vertices of a quadrilateral are \( \mathrm{K}(-1,3) \) and 6. \( L(2,3) \) and \( Q(6,-3) \) and \( R(m-1, n-2) \) if \( |K L|=|R Q| \) find \( m \) and \( n \)

Ask by Bradley Ingram. in Ghana
Nov 05,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The values of \( m \) and \( n \) are: - \( m = 4, n = -1 \) - \( m = 7, n = 2 \) - \( m = 10, n = -1 \) - \( m = 7, n = -4 \) - \( m = 5, n = 1 \) - \( m = 5, n = -3 \) - \( m = 9, n = 1 \) - \( m = 9, n = -3 \)

Solución

To find the values of \( m \) and \( n \) such that the lengths of segments \( KL \) and \( RQ \) are equal, we first need to calculate the length of segment \( KL \). The coordinates of points \( K \) and \( L \) are: - \( K(-1, 3) \) - \( L(2, 3) \) The length of segment \( KL \) can be calculated using the distance formula: \[ |KL| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting the coordinates of \( K \) and \( L \): \[ |KL| = \sqrt{(2 - (-1))^2 + (3 - 3)^2} = \sqrt{(2 + 1)^2 + 0^2} = \sqrt{3^2} = 3 \] Next, we need to find the length of segment \( RQ \), where the coordinates of points \( R \) and \( Q \) are: - \( R(m-1, n-2) \) - \( Q(6, -3) \) Using the distance formula again for segment \( RQ \): \[ |RQ| = \sqrt{(6 - (m-1))^2 + (-3 - (n-2))^2} \] This simplifies to: \[ |RQ| = \sqrt{(6 - m + 1)^2 + (-3 - n + 2)^2} = \sqrt{(7 - m)^2 + (-1 - n)^2} \] We set the lengths equal to each other: \[ |KL| = |RQ| \implies 3 = \sqrt{(7 - m)^2 + (-1 - n)^2} \] Squaring both sides to eliminate the square root gives: \[ 9 = (7 - m)^2 + (-1 - n)^2 \] Expanding the right side: \[ 9 = (7 - m)^2 + (n + 1)^2 \] Now we can express this as: \[ (7 - m)^2 + (n + 1)^2 = 9 \] This equation represents a circle centered at \( (7, -1) \) with a radius of 3. We can find integer solutions for \( m \) and \( n \) that satisfy this equation. To find integer solutions, we can test values for \( (7 - m) \) and \( (n + 1) \) that satisfy the equation: 1. \( (7 - m)^2 + (n + 1)^2 = 9 \) The possible integer pairs \( (a, b) \) such that \( a^2 + b^2 = 9 \) are: - \( (3, 0) \) - \( (0, 3) \) - \( (3, 0) \) - \( (-3, 0) \) - \( (0, -3) \) - \( (2, 2) \) - \( (2, -2) \) - \( (-2, 2) \) - \( (-2, -2) \) Now we can find corresponding values of \( m \) and \( n \): 1. For \( (3, 0) \): - \( 7 - m = 3 \) → \( m = 4 \) - \( n + 1 = 0 \) → \( n = -1 \) 2. For \( (0, 3) \): - \( 7 - m = 0 \) → \( m = 7 \) - \( n + 1 = 3 \) → \( n = 2 \) 3. For \( (-3, 0) \): - \( 7 - m = -3 \) → \( m = 10 \) - \( n + 1 = 0 \) → \( n = -1 \) 4. For \( (0, -3) \): - \( 7 - m = 0 \) → \( m = 7 \) - \( n + 1 = -3 \) → \( n = -4 \) 5. For \( (2, 2) \): - \( 7 - m = 2 \) → \( m = 5 \) - \( n + 1 = 2 \) → \( n = 1 \) 6. For \( (2, -2) \): - \( 7 - m = 2 \) → \( m = 5 \) - \( n + 1 = -2 \) → \( n = -3 \) 7. For \( (-2, 2) \): - \( 7 - m = -2 \) → \( m = 9 \) - \( n + 1 = 2 \) → \( n = 1 \) 8. For \( (-2, -2) \): - \( 7 - m = -2 \) → \( m = 9 \) - \( n + 1 = -2 \) → \( n = -3 \) Thus, the integer solutions for \( (m, n) \) are: - \( (4, -1) \) - \( (7, 2) \) - \( (10, -1) \) - \( (7, -4) \) - \( (5, 1) \) - \( (5, -3) \) - \( (9, 1) \) - \( (9, -3) \) In conclusion, the values of \( m \) and \( n \) can be: - \( m = 4, n = -1 \) - \( m = 7, n = 2 \) - \( m = 10, n = -1 \) - \( m = 7, n = -4 \) - \( m = 5, n = 1 \) - \( m = 5, n = -3 \) - \( m = 9, n = 1 \) - \( m = 9, n = -3 \) You can choose any of these pairs based on the context of the problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

First, we need to find the distance \( |KL| \) between points \( K(-1, 3) \) and \( L(2, 3) \). The formula for distance between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Applying the coordinates of \( K \) and \( L \): \[ |KL| = \sqrt{(2 - (-1))^2 + (3 - 3)^2} = \sqrt{(2 + 1)^2 + 0} = \sqrt{3^2} = 3 \] Now we are given that \( |KL| = |RQ| \). Next, we need to find \( |RQ| \) between points \( R(m-1, n-2) \) and \( Q(6, -3) \): \[ |RQ| = \sqrt{(6 - (m-1))^2 + (-3 - (n-2))^2} \] This can be simplified to: \[ |RQ| = \sqrt{(6 - m + 1)^2 + (-3 - n + 2)^2} = \sqrt{(7 - m)^2 + (-1 - n)^2} \] Setting this equal to the distance |KL|: \[ \sqrt{(7 - m)^2 + (-1 - n)^2} = 3 \] Squaring both sides gives: \[ (7 - m)^2 + (-1 - n)^2 = 9 \] Now we expand this equation: \[ (7 - m)^2 + (n + 1)^2 = 9 \] Let’s solve this equation step by step. First, we can set \( (7 - m) = a \) and \( (n + 1) = b \), leading to: \[ a^2 + b^2 = 9 \] This represents a circle with radius \( 3 \) centered at the origin in terms of \( a \) and \( b \). We can find specific integer solutions. For simplicity, let’s evaluate cases where \( a \) and \( b \) can yield integer squares. 1. If \( a = 0 \), then \( b^2 = 9 \Rightarrow b = 3 \) or \( b = -3 \) - \( 7 - m = 0 \Rightarrow m = 7 \) and \( n + 1 = 3 \Rightarrow n = 2 \) → solution: \( (m, n) = (7, 2) \) - \( 7 - m = 0 \Rightarrow m = 7 \) and \( n + 1 = -3 \Rightarrow n = -4 \) → solution: \( (m, n) = (7, -5) \) 2. If \( a = 3 \), then \( b^2 = 0 \Rightarrow b = 0 \) - \( 7 - m = 3 \Rightarrow m = 4 \) and \( n + 1 = 0 \Rightarrow n = -1 \) → solution: \( (m, n) = (4, -1) \) 3. If \( a = -3 \), then \( b^2 = 0 \Rightarrow b = 0 \) - \( 7 - m = -3 \Rightarrow m = 10 \) and \( n + 1 = 0 \Rightarrow n = -1 \) → solution: \( (m, n) = (10, -1) \) 4. If \( a = 2 \) or \( a = -2 \), we can find similar assignments giving other integer pairs based on the squares. Verifying these: We can take pairs [\( (m, n) (7, 2) ,( 4, -1), (10, -1) \)]. Lastly, one valid solution for \( (m, n) = (4, -1) \) is commonly accepted after ensuring all conditions are intact. Thus, the value of \( m \) and \( n \) could be: \[ m = 4, \; n = -1 \] or others depending on the integer conditions. Final solutions, you can pick your pair!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad