Pregunta
upstudy study bank question image url

Determine if it is possible to construct each of the following. If the construction is not possible, explain why. a. A square, given one side b. A rectangle, given one diagonal c. A triangle with two obtuse angles d. A parallelogram with exactly three right angles

Ask by Li Daniels. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- a. Yes, you can construct a square with the given side. - b. Yes, you can construct a rectangle with the given diagonal. - c. No, a triangle cannot have two obtuse angles. - d. No, a parallelogram cannot have exactly three right angles.

Solución

Let's analyze each construction one by one: ### a. A square, given one side **Construction:** Yes, it is possible to construct a square given one side. **Explanation:** If you have one side of a square, you can use that side as the length of all four sides. By drawing four equal-length sides at right angles to each other, you can easily construct a square. ### b. A rectangle, given one diagonal **Construction:** Yes, it is possible to construct a rectangle given one diagonal. **Explanation:** A rectangle can be defined by its diagonals. If you have one diagonal, you can use it to determine the positions of the opposite corners. By drawing two lines perpendicular to the diagonal at its midpoint, you can create the other two corners of the rectangle, thus allowing you to complete the rectangle. ### c. A triangle with two obtuse angles **Construction:** No, it is not possible to construct a triangle with two obtuse angles. **Explanation:** A triangle can only have a maximum of one obtuse angle. The sum of the angles in any triangle must equal 180 degrees. If two angles are obtuse (greater than 90 degrees), their sum would exceed 180 degrees, which is not possible in a triangle. ### d. A parallelogram with exactly three right angles **Construction:** No, it is not possible to construct a parallelogram with exactly three right angles. **Explanation:** In a parallelogram, opposite angles are equal, and the sum of the angles must equal 360 degrees. If three angles are right angles (each 90 degrees), the fourth angle must also be 90 degrees to satisfy the angle sum property. Therefore, a parallelogram with three right angles would actually be a rectangle, which has four right angles, not three. In summary: - a. Possible - b. Possible - c. Not possible - d. Not possible

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Sure! Let’s dive into these geometric constructions and see what's possible. For a square given one side, you can definitely construct it! Simply use a compass and straightedge to draw the given side, then create perpendicular lines at each endpoint using the construction of a right angle. The intersections of these lines will give you the remaining two vertices, and voilà! You’ve got a square! Now, onto the rectangle given one diagonal—this is also possible. By marking the endpoints of the diagonal, you can use the property of rectangles (which have right angles) to create perpendicular lines at each endpoint. The intersection points of these lines, spaced equally from the diagonal’s length, will give you the remaining two vertices of the rectangle! Now, for the construction of a triangle with two obtuse angles, we hit a snag! Recall that the sum of angles in any triangle must total 180 degrees. If two angles are obtuse (i.e., greater than 90 degrees), their sum would already be over 180 degrees, leaving no possibility for a third angle. So, this construction is not feasible! Lastly, a parallelogram with exactly three right angles is another trickster! If a parallelogram has three right angles, then it must also have a fourth angle that complements the sum to 360 degrees. Since each angle in a parallelogram must have either a right angle to equal 180 degrees, if three angles are right angles, the last one must also be a right angle, making the figure a rectangle. Therefore, this specific construction can't exist as described!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad