Pregunta
upstudy study bank question image url

If an object is dropped from a 174 -foot-high building, its position (in feet above the ground) is given by \( s(t)=-16 t^{2}+174 \), where \( t \) is the time in seconds since it was dropped. (a) What is its velocity 1 second after being dropped? (b) When will it hit the ground? (Hint: Solve \( s(t)=0 \).) (c) What is its velocity upon impact (at the instant when it hits the ground)?

Ask by Pollard Perkins. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The velocity 1 second after being dropped is -32 feet per second. (b) The object will hit the ground after approximately 3.30 seconds. (c) The velocity upon impact is approximately -105.53 feet per second.

Solución

Simplify the expression by following steps: - step0: Solution: \(-32t\) The velocity function is given by: \[ v(t) = -32t \] Now, we can find the velocity at \( t = 1 \) second: \[ v(1) = -32(1) = -32 \text{ feet per second} \] ### (b) When will it hit the ground? To find when the object hits the ground, we need to solve for \( t \) when \( s(t) = 0 \): \[ -16t^2 + 174 = 0 \] Let's solve this equation. Solve the quadratic equation by following steps: - step0: Solve using square roots: \(-16t^{2}+174=0\) - step1: Add or subtract both sides: \(-16t^{2}=-174\) - step2: Divide both sides: \(\frac{-16t^{2}}{-16}=\frac{-174}{-16}\) - step3: Divide the numbers: \(t^{2}=\frac{87}{8}\) - step4: Simplify the expression: \(t=\pm \sqrt{\frac{87}{8}}\) - step5: Simplify the expression: \(t=\pm \frac{\sqrt{174}}{4}\) - step6: Separate into possible cases: \(\begin{align}&t=\frac{\sqrt{174}}{4}\\&t=-\frac{\sqrt{174}}{4}\end{align}\) - step7: Rewrite: \(t_{1}=-\frac{\sqrt{174}}{4},t_{2}=\frac{\sqrt{174}}{4}\) The solutions to the equation \( -16t^2 + 174 = 0 \) are: \[ t_1 = -\frac{\sqrt{174}}{4}, \quad t_2 = \frac{\sqrt{174}}{4} \] Since time cannot be negative, we will only consider the positive solution: \[ t = \frac{\sqrt{174}}{4} \] Now, let's calculate the numerical value of \( t \). Calculate the value by following steps: - step0: Calculate: \(\frac{\sqrt{174}}{4}\) The time when the object hits the ground is approximately: \[ t \approx 3.30 \text{ seconds} \] ### (c) What is its velocity upon impact (at the instant when it hits the ground)? To find the velocity upon impact, we will substitute \( t = \frac{\sqrt{174}}{4} \) into the velocity function \( v(t) = -32t \): \[ v\left(\frac{\sqrt{174}}{4}\right) = -32\left(\frac{\sqrt{174}}{4}\right) \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(-32\left(\frac{\sqrt{174}}{4}\right)\) - step1: Remove the parentheses: \(-32\times \frac{\sqrt{174}}{4}\) - step2: Reduce the numbers: \(-8\sqrt{174}\) The velocity upon impact is approximately: \[ v \approx -105.53 \text{ feet per second} \] ### Summary of Results: (a) The velocity 1 second after being dropped is \(-32\) feet per second. (b) The object will hit the ground at approximately \(3.30\) seconds. (c) The velocity upon impact is approximately \(-105.53\) feet per second.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the answers to your questions, let’s dive into the equations of motion. (a) To find the velocity 1 second after being dropped, you can use the derivative of the position function \( s(t) \). The velocity function is given by: \[ v(t) = s'(t) = -32t \] At \( t = 1 \) second, the velocity will be: \[ v(1) = -32(1) = -32 \text{ feet per second} \] (b) To determine when the object hits the ground, we set the position function \( s(t) \) to zero: \[ -16t^2 + 174 = 0 \] Solving for \( t \): \[ 16t^2 = 174 \] \[ t^2 = \frac{174}{16} = 10.875 \] \[ t = \sqrt{10.875} \approx 3.30 \text{ seconds} \] (c) The velocity upon impact can be found by substituting the time of impact back into the velocity function: \[ v(3.30) = -32(3.30) \approx -105.6 \text{ feet per second} \] So, the object falls with a velocity of approximately -105.6 feet per second upon impact with the ground.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad