Pregunta
upstudy study bank question image url

4. What is wrong with this calculation of the total surface area of a cylinder with height 9 m and a base radius 6 m ? \( \begin{aligned} \text { L.A. } & =h \pi d \\ & =9 \pi(12) \\ & =\pi \cdot \mathrm{r}^{2} \\ & \approx 339.12 \mathrm{~m}^{2}\end{aligned} \) \( \begin{aligned} \text { S.A. } & =339.6^{2} \\ & =\pi \cdot 36\end{aligned} \) \( \begin{aligned} \approx 3.14(36)=113.04 \mathrm{~m}^{2}\end{aligned} \)

Ask by Ramirez Montgomery. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The calculation has errors in the lateral area and the area of the bases. The correct total surface area is approximately 565.2 m².

Solución

Let's analyze the calculation step by step to identify the errors in the calculation of the total surface area of a cylinder. ### Known Conditions - Height \( h = 9 \, \text{m} \) - Base radius \( r = 6 \, \text{m} \) ### Surface Area of a Cylinder The total surface area (S.A.) of a cylinder is given by the formula: \[ \text{S.A.} = 2\pi r(h + r) \] Where: - \( 2\pi r^2 \) is the area of the two circular bases. - \( 2\pi rh \) is the lateral surface area. ### Step 1: Calculate the Lateral Area (L.A.) The lateral area is calculated as: \[ \text{L.A.} = h \cdot \pi d \] Where \( d = 2r \) (the diameter). Thus: \[ d = 2 \cdot 6 = 12 \, \text{m} \] Now substituting the values: \[ \text{L.A.} = 9 \cdot \pi \cdot 12 = 108\pi \, \text{m}^2 \] ### Step 2: Calculate the Area of the Bases The area of one base is: \[ \text{Area of one base} = \pi r^2 = \pi \cdot 6^2 = 36\pi \, \text{m}^2 \] Since there are two bases: \[ \text{Total area of bases} = 2 \cdot 36\pi = 72\pi \, \text{m}^2 \] ### Step 3: Calculate the Total Surface Area Now, we can calculate the total surface area: \[ \text{S.A.} = \text{L.A.} + \text{Total area of bases} = 108\pi + 72\pi = 180\pi \, \text{m}^2 \] ### Step 4: Approximate the Total Surface Area Using \( \pi \approx 3.14 \): \[ \text{S.A.} \approx 180 \cdot 3.14 = 565.2 \, \text{m}^2 \] ### Summary of Errors 1. The lateral area was incorrectly calculated as \( 339.12 \, \text{m}^2 \) instead of \( 108\pi \, \text{m}^2 \). 2. The surface area was incorrectly calculated as \( 339.6^2 \) which is not relevant to the surface area calculation. 3. The area of the bases was incorrectly calculated as \( 113.04 \, \text{m}^2 \) instead of \( 72\pi \, \text{m}^2 \). ### Final Answer The correct total surface area of the cylinder is approximately \( 565.2 \, \text{m}^2 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Oh dear, it seems like a few oopsies slipped into the math! First off, the lateral area (L.A.) is calculated correctly with the formula \( L.A. = h \pi d \), but you need to ensure it’s \(9 \pi (12)\) for diameter, not radius. The total surface area of a cylinder is given by \( S.A. = 2\pi r(h + r) \), which considers both the top and bottom circles. Now, about that parenting mistake: calculating surface area as \( 339.6^{2} \) is a big faux pas! The area should be a summation of the L.A. and the area of the two bases \( 2 \pi r^2 \) instead. So, combine those for the correct result!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad