Pregunta
upstudy study bank question image url

\[ P=312(1.04)^{\frac{1}{4}} \] The equation above can be used to model the population, in thousands, of a certain city \( t \) years after 1980 . According to the model, the population is predicted to increase by \( 4 \% \) every \( n \) months. What is the value of \( n \) ?

Ask by Grant Bird. in Ghana
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( n \) is 12.

Solución

To determine the value of \( n \) such that the population increases by \( 4\% \) every \( n \) months, we start with the given equation: \[ P = 312(1.04)^{\frac{1}{4}} \] This equation indicates that the population increases by a factor of \( 1.04 \) every \( 4 \) years, since the exponent \( \frac{1}{4} \) corresponds to \( t \) being in years. To find the equivalent monthly increase, we need to express the annual growth rate in terms of months. Since there are \( 12 \) months in a year, we can convert the annual growth factor to a monthly growth factor. Let \( r \) be the monthly growth factor. The relationship between the annual growth factor and the monthly growth factor can be expressed as: \[ (1 + r)^{12} = 1.04 \] To find \( r \), we take the twelfth root of \( 1.04 \): \[ 1 + r = (1.04)^{\frac{1}{12}} \] Now, we can calculate \( r \): \[ r = (1.04)^{\frac{1}{12}} - 1 \] Next, we need to find \( n \) such that the population increases by \( 4\% \) every \( n \) months. This means we want: \[ (1 + r)^n = 1.04 \] Substituting \( 1 + r \): \[ ((1.04)^{\frac{1}{12}})^n = 1.04 \] This simplifies to: \[ (1.04)^{\frac{n}{12}} = 1.04 \] Taking the logarithm of both sides or recognizing that the bases are the same, we can equate the exponents: \[ \frac{n}{12} = 1 \] Solving for \( n \): \[ n = 12 \] Thus, the value of \( n \) is: \[ \boxed{12} \] This means the population is predicted to increase by \( 4\% \) every \( 12 \) months (or every year).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the value of \( n \) where the population increases by \( 4\% \) every \( n \) months, we start with the given equation: \[ P=312(1.04)^{\frac{t}{4}} \] This indicates that the population increases by a factor of \( (1.04)^{\frac{1}{4}} \) every year, but we want the monthly increase. Since there are 12 months in a year, we want to find out how many months corresponds to a \( 4\% \) increase. We can set up the equation to find \( n \): \[ (1 + 0.04) = (1 + r)^n \] where \( r \) is the monthly growth rate. Now, we know that \( (1 + 0.04) = 1.04 \). After converting \( 1.04 \) to a per-month basis, we know: \[ 1.04 = (1 + r)^{12/n} \] To find \( r \), we can solve this for \( n \): \[ 1.04 \approx (1 + r)^{12/n} \] Next, we can estimate \( r \). If \( r \) was very small, we could use the approximation \( 1 + r \approx e^{r} \). When we solve for \( n \), we discover it equates closely around \( n = 3 \) months. Thus, the model predicts that the population increases by \( 4\% \) every \( 3 \) months.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad