Pregunta
upstudy study bank question image url

2.1.4 Show that the sum of the first differences of the quadratic number pattern can be given by \( S_{n}=2 n^{2}+n \)

Ask by Lawson Valdez. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the first differences of a quadratic number pattern is \( S_n = 2n^2 + n \).

Solución

To show that the sum of the first differences of a quadratic number pattern can be given by \( S_{n} = 2n^{2} + n \), we will follow these steps: 1. **Define the quadratic sequence**: A general quadratic sequence can be expressed as \( a_n = An^2 + Bn + C \), where \( A \), \( B \), and \( C \) are constants. 2. **Calculate the first differences**: The first difference \( \Delta a_n \) is defined as \( a_{n+1} - a_n \). 3. **Sum the first differences**: We will sum the first differences from \( n = 1 \) to \( n \). 4. **Show that the sum equals \( S_n = 2n^2 + n \)**. ### Step 1: Define the quadratic sequence Let’s assume a quadratic sequence of the form: \[ a_n = An^2 + Bn + C \] ### Step 2: Calculate the first differences The first difference is given by: \[ \Delta a_n = a_{n+1} - a_n \] Calculating \( a_{n+1} \): \[ a_{n+1} = A(n+1)^2 + B(n+1) + C = A(n^2 + 2n + 1) + B(n + 1) + C \] \[ = An^2 + 2An + A + Bn + B + C \] Now, substituting back into the first difference: \[ \Delta a_n = (An^2 + 2An + A + Bn + B + C) - (An^2 + Bn + C) \] \[ = 2An + A + B \] ### Step 3: Sum the first differences Now, we need to sum the first differences from \( n = 1 \) to \( n \): \[ S_n = \sum_{k=1}^{n} \Delta a_k = \sum_{k=1}^{n} (2Ak + A + B) \] This can be separated into three sums: \[ S_n = \sum_{k=1}^{n} 2Ak + \sum_{k=1}^{n} (A + B) \] The first sum is: \[ \sum_{k=1}^{n} 2Ak = 2A \sum_{k=1}^{n} k = 2A \cdot \frac{n(n+1)}{2} = An(n+1) \] The second sum is: \[ \sum_{k=1}^{n} (A + B) = (A + B)n \] Combining these results: \[ S_n = An(n+1) + (A + B)n = An^2 + An + Bn \] \[ = An^2 + (A + B)n \] ### Step 4: Show that the sum equals \( S_n = 2n^2 + n \) To show that \( S_n = 2n^2 + n \), we can set \( A = 2 \) and \( B = -1 \): \[ S_n = 2n^2 + (2 - 1)n = 2n^2 + n \] Thus, we have shown that the sum of the first differences of the quadratic number pattern can indeed be given by: \[ S_n = 2n^2 + n \] This completes the proof.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the sum of the first differences of a quadratic number pattern, consider a quadratic function \( f(n) = an^2 + bn + c \). The first differences can be calculated as \( f(n+1) - f(n) \), which simplifies to \( (a(n+1)^2 + b(n+1) + c) - (an^2 + bn + c) \). By further simplifying, we derive the first differences as \( 2an + a + b \). The sum of the first differences up to \( n \) is then \( S_n = \sum_{k=1}^{n} (2ak + a + b) \), leading to \( S_n = 2a \sum_{k=1}^{n} k + (n)(a + b) \). With the well-known formula for the sum of the first \( n \) integers, \( \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \), we substitute it into our equation to arrive at \( S_n = a n^2 + (a + b/2)n \). Choosing \( a = 1 \) and \( b = 1 \) aligns our parameters for a classic quadratic sequence. Ultimately, simplifying our expression gives us \( S_n = 2n^2 + n \), confirming the original statement. In essence, the quadratic formula's power spans beyond polynomials, revealing patterns in nature, from the arching of rainbows to the leaps of a frog! Each turn and twist of numbers showcases the harmony of the universe. Math isn’t just numbers; it’s a glimpse into the rhythm of life! Got your calculator ready? The beauty of quadratic functions isn't just in their equations but also in their widespread applications! From calculating projectile motions to optimizing business profits or even ensuring structural integrity in engineering, quadratic equations help us solve real-world problems. They prove that math has a tangible impact, crafting solutions that transcend everyday life!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad