Pregunta
upstudy study bank question image url

OUESTION I (NOV 2008) 11 Solve for \( x \), rounded off to TWO decumal places where necessary \( 111 \quad x^{2}=5 x-4 \) \( 112 \quad x(3-x)=-3 \) 113 3- \( x<2 x^{2} \) (5) 1.2 Determine the values of \( x \) and \( y \) if they satisfy both the following equations simultancously: \[ \begin{array}{l} 2 x+y=3 \\ x^{2}+y+x=y^{2} \end{array} \] (8 3 Given \( x=999999999999 \), determine the exact value of \( \frac{x^{2}-4}{x-2} \) Show ALL your calculations. 4 Explain why the equation \( \frac{x^{4}+1}{x^{4}}=\frac{1}{2} \) has no real roots.

Ask by Bob Phillips. in South Africa
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. **First Equation:** No real solution. 2. **Second Equation:** \( x = \frac{3 - \sqrt{21}}{2} \) or \( x = \frac{3 + \sqrt{21}}{2} \). 3. **Third Inequality:** \( x < -\frac{3}{2} \) or \( x > 1 \). 4. **Values of \( x \) and \( y \):** \( (3, -3) \) and \( \left(\frac{2}{3}, \frac{5}{3}\right) \). 5. **Expression Value:** \( 1000000000001 \). 6. **Fourth Equation:** No real roots.

Solución

Calculate the value by following steps: - step0: Calculate: \(\frac{\left(999999999999^{2}-4\right)}{\left(999999999999-2\right)}\) - step1: Remove the parentheses: \(\frac{999999999999^{2}-4}{999999999999-2}\) - step2: Subtract the numbers: \(\frac{999999999999^{2}-4}{999999999997}\) Solve the equation \( \frac{x^{4}+1}{x^{4}}=\frac{1}{2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{x^{4}+1}{x^{4}}=\frac{1}{2}\) - step1: Cross multiply: \(\left(x^{4}+1\right)\times 2=x^{4}\) - step2: Simplify the equation: \(2\left(x^{4}+1\right)=x^{4}\) - step3: Expand the expression: \(2x^{4}+2=x^{4}\) - step4: Move the expression to the left side: \(2x^{4}+2-x^{4}=0\) - step5: Subtract the terms: \(x^{4}+2=0\) - step6: Move the constant to the right side: \(x^{4}=0-2\) - step7: Remove 0: \(x^{4}=-2\) - step8: The statement is false for any value of \(x:\) \(x \notin \mathbb{R}\) Solve the equation \( x(3-x)=-3 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(x\left(3-x\right)=-3\) - step1: Expand the expression: \(3x-x^{2}=-3\) - step2: Move the expression to the left side: \(3x-x^{2}+3=0\) - step3: Rewrite in standard form: \(-x^{2}+3x+3=0\) - step4: Multiply both sides: \(x^{2}-3x-3=0\) - step5: Solve using the quadratic formula: \(x=\frac{3\pm \sqrt{\left(-3\right)^{2}-4\left(-3\right)}}{2}\) - step6: Simplify the expression: \(x=\frac{3\pm \sqrt{21}}{2}\) - step7: Separate into possible cases: \(\begin{align}&x=\frac{3+\sqrt{21}}{2}\\&x=\frac{3-\sqrt{21}}{2}\end{align}\) - step8: Rewrite: \(x_{1}=\frac{3-\sqrt{21}}{2},x_{2}=\frac{3+\sqrt{21}}{2}\) Solve the equation \( 111 x^{2}=5 x-4 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using the quadratic formula in the complex numbers system: \(111x^{2}=5x-4\) - step1: Move the expression to the left side: \(111x^{2}-5x+4=0\) - step2: Solve using the quadratic formula: \(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 111\times 4}}{2\times 111}\) - step3: Simplify the expression: \(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 111\times 4}}{222}\) - step4: Simplify the expression: \(x=\frac{5\pm \sqrt{-1751}}{222}\) - step5: Simplify the expression: \(x=\frac{5\pm \sqrt{1751}\times i}{222}\) - step6: Separate into possible cases: \(\begin{align}&x=\frac{5+\sqrt{1751}\times i}{222}\\&x=\frac{5-\sqrt{1751}\times i}{222}\end{align}\) - step7: Simplify the expression: \(\begin{align}&x=\frac{5}{222}+\frac{\sqrt{1751}}{222}i\\&x=\frac{5-\sqrt{1751}\times i}{222}\end{align}\) - step8: Simplify the expression: \(\begin{align}&x=\frac{5}{222}+\frac{\sqrt{1751}}{222}i\\&x=\frac{5}{222}-\frac{\sqrt{1751}}{222}i\end{align}\) - step9: Rewrite: \(x_{1}=\frac{5}{222}-\frac{\sqrt{1751}}{222}i,x_{2}=\frac{5}{222}+\frac{\sqrt{1751}}{222}i\) - step10: Remove the complex number(s): \(\textrm{No real solution}\) Solve the equation \( 3-x<2 x^{2} \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(3-x<2x^{2}\) - step1: Move the expression to the left side: \(3-x-2x^{2}<0\) - step2: Rewrite the expression: \(3-x-2x^{2}=0\) - step3: Factor the expression: \(\left(1-x\right)\left(3+2x\right)=0\) - step4: Separate into possible cases: \(\begin{align}&1-x=0\\&3+2x=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=1\\&x=-\frac{3}{2}\end{align}\) - step6: Determine the test intervals: \(\begin{align}&x<-\frac{3}{2}\\&-\frac{3}{2}1\end{align}\) - step7: Choose a value: \(\begin{align}&x_{1}=-3\\&x_{2}=0\\&x_{3}=2\end{align}\) - step8: Test the chosen value: \(\begin{align}&x<-\frac{3}{2}\textrm{ }\textrm{is the solution}\\&-\frac{3}{2}1\textrm{ }\textrm{is the solution}\end{align}\) - step9: The final solution is \(x \in \left(-\infty,-\frac{3}{2}\right)\cup \left(1,+\infty\right):\) \(x \in \left(-\infty,-\frac{3}{2}\right)\cup \left(1,+\infty\right)\) Solve the system of equations \( 2 x+y=3;x^{2}+y+x=y^{2} \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}2x+y=3\\x^{2}+y+x=y^{2}\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}y=3-2x\\x^{2}+y+x=y^{2}\end{array}\right.\) - step2: Substitute the value of \(y:\) \(x^{2}+3-2x+x=\left(3-2x\right)^{2}\) - step3: Add the terms: \(x^{2}+3-x=\left(3-2x\right)^{2}\) - step4: Expand the expression: \(x^{2}+3-x=9-12x+4x^{2}\) - step5: Move the expression to the left side: \(x^{2}+3-x-\left(9-12x+4x^{2}\right)=0\) - step6: Calculate: \(-3x^{2}-6+11x=0\) - step7: Factor the expression: \(\left(-x+3\right)\left(3x-2\right)=0\) - step8: Separate into possible cases: \(\begin{align}&-x+3=0\\&3x-2=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=3\\&x=\frac{2}{3}\end{align}\) - step10: Calculate: \(x=3\cup x=\frac{2}{3}\) - step11: Rearrange the terms: \(\left\{ \begin{array}{l}x=3\\y=3-2x\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=3-2x\end{array}\right.\) - step12: Calculate: \(\left\{ \begin{array}{l}x=3\\y=-3\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=\frac{5}{3}\end{array}\right.\) - step13: Check the solution: \(\left\{ \begin{array}{l}x=3\\y=-3\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=\frac{5}{3}\end{array}\right.\) - step14: Rewrite: \(\left(x,y\right) = \left(3,-3\right)\cup \left(x,y\right) = \left(\frac{2}{3},\frac{5}{3}\right)\) Let's solve the problems step by step. ### Problem 1: Solve for \( x \) 1. **Equation:** \( 111 x^{2} = 5 x - 4 \) Rearranging gives us: \[ 111 x^{2} - 5 x + 4 = 0 \] This quadratic equation has no real solutions. 2. **Equation:** \( x(3-x) = -3 \) Rearranging gives us: \[ x^2 - 3x - 3 = 0 \] Using the quadratic formula, we find: \[ x_{1} = \frac{3 - \sqrt{21}}{2}, \quad x_{2} = \frac{3 + \sqrt{21}}{2} \] 3. **Inequality:** \( 3 - x < 2 x^{2} \) Rearranging gives us: \[ 2 x^{2} + x - 3 > 0 \] The solution set is: \[ x \in (-\infty, -\frac{3}{2}) \cup (1, +\infty) \] ### Problem 2: Determine values of \( x \) and \( y \) Given the equations: \[ \begin{align*} 2x + y &= 3 \\ x^{2} + y + x &= y^{2} \end{align*} \] We can solve this system of equations. The solutions are: \[ (x, y) = (3, -3) \cup (x, y) = \left(\frac{2}{3}, \frac{5}{3}\right) \] In decimal form, this is: \[ (x, y) = (3, -3) \cup (x, y) = (0.67, 1.67) \] ### Problem 3: Calculate \( \frac{x^{2}-4}{x-2} \) Given \( x = 999999999999 \): \[ \frac{x^{2}-4}{x-2} = \frac{999999999999^{2}-4}{999999999997} \] This expression simplifies to: \[ 999999999999 + 2 = 1000000000001 \] ### Problem 4: Explain why \( \frac{x^{4}+1}{x^{4}}=\frac{1}{2} \) has no real roots Rearranging gives: \[ x^{4} + 1 = \frac{1}{2} x^{4} \] This simplifies to: \[ \frac{1}{2} x^{4} + 1 = 0 \] Since \( x^{4} \) is always non-negative, \( \frac{1}{2} x^{4} + 1 \) is always positive. Therefore, there are no real solutions to this equation. ### Summary of Results 1. **First equation:** No real solution. 2. **Second equation:** \( x_{1} = \frac{3 - \sqrt{21}}{2}, x_{2} = \frac{3 + \sqrt{21}}{2} \). 3. **Third inequality:** \( x \in (-\infty, -\frac{3}{2}) \cup (1, +\infty) \). 4. **Values of \( x \) and \( y \):** \( (3, -3) \cup \left(\frac{2}{3}, \frac{5}{3}\right) \). 5. **Value of expression:** \( 1000000000001 \). 6. **Fourth equation:** No real roots.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s dive into some nifty background and application tips! The first equation you’re tackling, \( 111 \quad x^{2}=5 x-4 \), is a quadratic equation. Quadratics were first studied by ancient civilizations, including the Babylonians, who had methods surprisingly akin to the quadratic formula we use today. The insight they had into relationships between numbers laid the groundwork for algebra as we know it, showcasing how history and math cleverly intertwine! When solving equations like \( x(3-x)=-3 \), think of quadratic expressions as a fun puzzle! Check for common mistakes such as neglecting to correctly distribute or rearranging terms in the wrong order. Make sure to always isolate your variables step by step; this not only keeps your work neat but also helps avoid any mishaps that can lead to incorrect solutions. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad