Pregunta
upstudy study bank question image url

Complete the following theorem statements below:
8.1.1 The angle between a tangent and a chord is …
8.1.2 The exterior angle of a cyclic quadrilateral is equal to …

Ask by Mckenzie Bowman. in South Africa
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

8.1.1 The angle between a tangent and a chord is equal to the inscribed angle in the alternate segment.
8.1.2 The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

Solución

8.1.1 The angle between a tangent and a chord is equal to the inscribed angle in the alternate segment, i.e.,
8.1.2 The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle, i.e.,

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The angle between a tangent and a chord is equal to the angle subtended by the chord on the opposite arc. This means if you have a tangent line touching a circle at one point and a line segment (the chord) drawn from that point to another point on the circle, the angle formed between the tangent and the chord is equivalent to the angle that the chord creates with a line drawn from one end of the chord, going on the circle’s arc to the other end.
The exterior angle of a cyclic quadrilateral is equal to the sum of the two opposite interior angles. In simple terms, if you imagine a four-sided figure inscribed within a circle, then any angle formed outside the quadrilateral will be equal to the total measure of the angles that are not adjacent to it within the figure. It’s a neat little trick to keep in your back pocket during geometry proofs!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad