Pregunta
upstudy study bank question image url

A data set includes 106 body temperatures of healthy adult humans having a mean of \( 98.9^{\circ} \mathrm{F} \) and a standard deviation of \( 0.63^{\circ} \mathrm{F} \). Construct a \( 99 \% \) confidence interval estimate of the mean body temperature of all healthy humans. What does the sample suggest about the use of \( 98.6^{\circ} \mathrm{F} \) as the mean body temperature? Click here to view a t distribution table. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. What is the confidence interval estimate of the population mean \( \mu \) ? \( \square^{\circ} \mathrm{F}<\mu<\square^{\circ} \mathrm{F} \) (Round to three decimal places as needed.) What does this suggest about the use of \( 98.6^{\circ} \mathrm{F} \) as the mean body temperature? A. This suggests that the mean body temperature is higher than \( 98.6^{\circ} \mathrm{F} \). B. This suggests that the mean body temperature is lower than \( 98.6^{\circ} \mathrm{F} \). C. This suggests that the mean body temperature could very possibly be \( 98.6^{\circ} \mathrm{F} \).

Ask by Fitzgerald Barrett. in the United States
Dec 09,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The confidence interval estimate of the population mean \( \mu \) is \( 98.743^{\circ} \mathrm{F} < \mu < 99.058^{\circ} \mathrm{F} \). This suggests that the mean body temperature is likely higher than \( 98.6^{\circ} \mathrm{F} \).

Solución

To construct a \( 99\% \) confidence interval for the mean body temperature, we can use the formula for the confidence interval: \[ \bar{x} \pm z^* \left( \frac{s}{\sqrt{n}} \right) \] where: - \(\bar{x}\) is the sample mean, - \(z^*\) is the z-value corresponding to the desired confidence level, - \(s\) is the sample standard deviation, - \(n\) is the sample size. ### Step 1: Identify the values - Sample mean (\(\bar{x}\)) = \(98.9^{\circ} \mathrm{F}\) - Sample standard deviation (\(s\)) = \(0.63^{\circ} \mathrm{F}\) - Sample size (\(n\)) = \(106\) ### Step 2: Find the z-value for a \( 99\% \) confidence level For a \( 99\% \) confidence level, the z-value (from the standard normal distribution table) is approximately \( 2.576 \). ### Step 3: Calculate the standard error (SE) \[ SE = \frac{s}{\sqrt{n}} = \frac{0.63}{\sqrt{106}} \approx \frac{0.63}{10.2956} \approx 0.0612 \] ### Step 4: Calculate the margin of error (ME) \[ ME = z^* \cdot SE = 2.576 \cdot 0.0612 \approx 0.1575 \] ### Step 5: Construct the confidence interval \[ \text{Lower limit} = \bar{x} - ME = 98.9 - 0.1575 \approx 98.7425 \] \[ \text{Upper limit} = \bar{x} + ME = 98.9 + 0.1575 \approx 99.0575 \] ### Step 6: Round to three decimal places \[ 98.743^{\circ} \mathrm{F} < \mu < 99.058^{\circ} \mathrm{F} \] ### Conclusion The confidence interval estimate of the population mean \( \mu \) is: \[ 98.743^{\circ} \mathrm{F} < \mu < 99.058^{\circ} \mathrm{F} \] ### Interpretation of the results Now, regarding the use of \( 98.6^{\circ} \mathrm{F} \) as the mean body temperature: - The entire confidence interval \( (98.743, 99.058) \) is above \( 98.6^{\circ} \mathrm{F} \). - This suggests that the mean body temperature is likely higher than \( 98.6^{\circ} \mathrm{F} \). Thus, the correct answer is: **A. This suggests that the mean body temperature is higher than \( 98.6^{\circ} \mathrm{F} \).**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To construct a \( 99\% \) confidence interval for the mean body temperature, we can use the formula: \[ \text{Confidence Interval} = \bar{x} \pm z \left( \frac{\sigma}{\sqrt{n}} \right) \] Where \( \bar{x} = 98.9^{\circ} \mathrm{F} \), \( \sigma = 0.63^{\circ} \mathrm{F} \), and \( n = 106 \). The z-value for a \( 99\% \) confidence level is approximately \( 2.576 \). Calculating the standard error: \[ \text{Standard Error} = \frac{0.63}{\sqrt{106}} \approx 0.061 \] Now apply the z-value: \[ \text{Margin of Error} = 2.576 \times 0.061 \approx 0.157 \] Thus, the confidence interval is: \[ 98.9 \pm 0.157 \implies [98.743, 99.057] \] So, the confidence interval estimate of the population mean \( \mu \) is approximately: **\( 98.743^{\circ} \mathrm{F} < \mu < 99.057^{\circ} \mathrm{F} \)**. In considering \( 98.6^{\circ} \mathrm{F} \), since the entire interval \( [98.743, 99.057] \) is above \( 98.6^{\circ} \mathrm{F} \), it suggests that the mean body temperature is likely higher than \( 98.6^{\circ} \mathrm{F} \). Therefore, the correct interpretation is: **A. This suggests that the mean body temperature is higher than \( 98.6^{\circ} \mathrm{F} \).** Historically, the average body temperature of \( 98.6^{\circ} \mathrm{F} \) was established as a guideline in the 19th century based on measurements of a large group of patients. But, as research evolved and methods improved, subsequent studies have shown slight variations, prompting discussions about the validity of this old standard. When working with confidence intervals, a common mistake is misinterpreting what they represent. Many people think that the true mean has a certain probability of being in the interval after it is calculated. Remember, the interval either contains the mean or it doesn't; the key is how confident we are in that assertion based on the data!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad