Line \( \ell_{1} \) has the equation \( -x+y=4 \) and line \( \ell_{2} \) has the equation \( -x+y=-3 \). Find the distance between \( \ell_{1} \) and \( \ell_{2} \). Round your answer to the nearest tenth.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To determine the distance between the two parallel lines \( \ell_{1} \) and \( \ell_{2} \), we can use the formula for the distance between two parallel lines given in the form \( Ax + By + C_1 = 0 \) and \( Ax + By + C_2 = 0 \): \[ \text{Distance} = \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}} \] First, we convert the given line equations into the appropriate form. For \( \ell_{1} \): \[ -x + y - 4 = 0 \quad \Rightarrow \quad A = -1, B = 1, C_1 = -4 \] For \( \ell_{2} \): \[ -x + y + 3 = 0 \quad \Rightarrow \quad C_2 = 3 \] Now we can plug in the values into the distance formula: \[ \text{Distance} = \frac{|3 - (-4)|}{\sqrt{(-1)^2 + 1^2}} = \frac{|3 + 4|}{\sqrt{1 + 1}} = \frac{7}{\sqrt{2}} = \frac{7\sqrt{2}}{2} \] Calculating this gives: \[ \frac{7\sqrt{2}}{2} \approx \frac{7 \times 1.414}{2} \approx \frac{9.899}{2} \approx 4.949 \] Rounding this to the nearest tenth, we find that the distance between the lines is approximately: \[ \boxed{4.9} \]
