Pregunta
upstudy study bank question image url

20. A bacteria culture starts with 1,000 bacteria and the number doubles every 40 minutes. a) Find a formula for the number of bacteria at time \( t \). b) Find the number of bacteria after one hour. 60 min c) After how many minutes will there be 50,000 bacteria?

Ask by Summers Paul. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The number of bacteria at time \( t \) is \( N(t) = 1000 \times 2^{t/40} \). b) After one hour (60 minutes), there are approximately 2,828 bacteria. c) It will take about 226 minutes for the bacteria count to reach 50,000.

Solución

a) Let N(t) be the number of bacteria after t minutes. Since the bacteria double every 40 minutes and the initial number is 1,000, the number can be modeled by   N(t) = 1000 · 2^(t/40). b) For t = 60 minutes:   N(60) = 1000 · 2^(60/40) = 1000 · 2^(3/2) = 1000 · (2√2). Calculating approximately, since √2 ≈ 1.414,   N(60) ≈ 1000 · (2 × 1.414) = 1000 · 2.828 ≈ 2828 bacteria. c) To find the time when there are 50,000 bacteria, set N(t) equal to 50,000 and solve for t:   1000 · 2^(t/40) = 50,000. Divide both sides by 1000:   2^(t/40) = 50. Take the logarithm (using natural log, ln) of both sides:   ln(2^(t/40)) = ln(50). Using the logarithm rule ln(a^b) = b ln(a):   (t/40) ln 2 = ln 50, so   t/40 = ln 50 / ln 2. Finally, multiply both sides by 40:   t = 40 · (ln 50 / ln 2). This is the exact time in minutes when there will be 50,000 bacteria. For an approximate value, note that ln 50 ≈ 3.912 and ln 2 ≈ 0.693:   t ≈ 40 · (3.912 / 0.693) ≈ 40 · 5.643 ≈ 225.7 minutes. Thus, it will take about 226 minutes (approximately) for the bacteria count to reach 50,000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the formula for the number of bacteria at time \( t \), we can use the equation \( N(t) = N_0 \times 2^{(t/T)} \), where \( N_0 \) is the initial number of bacteria, \( T \) is the doubling time, and \( t \) is the time elapsed. In this case, \( N_0 = 1000 \) and \( T = 40 \) minutes. Therefore, the formula becomes: \[ N(t) = 1000 \times 2^{(t/40)} \] For part b, we want to find the number of bacteria after 60 minutes. Plugging \( t = 60 \) into the formula: \[ N(60) = 1000 \times 2^{(60/40)} = 1000 \times 2^{1.5} \approx 1000 \times 2.83 \approx 2830 \] Thus, after one hour, there will be approximately 2830 bacteria. To answer part c, we set \( N(t) = 50000 \) and solve for \( t \): \[ 50000 = 1000 \times 2^{(t/40)} \] Dividing both sides by 1000: \[ 50 = 2^{(t/40)} \] Taking the logarithm (base 2) of both sides gives us: \[ t/40 = \log_2(50) \] Calculating \( \log_2(50) \) gives approximately 5.64, so: \[ t \approx 5.64 \times 40 \approx 225.5 \text{ minutes} \] Thus, it will take approximately 226 minutes for the culture to grow to 50,000 bacteria. Now for some fun extras! Did you know that the phenomenon of bacterial growth has been observed since the early studies of microbiology in the 19th century? Scientists like Louis Pasteur paved the way for our understanding of how bacteria reproduce and their impact on health and disease. Their work laid the foundation for fields like immunology and microbiome studies, which remain hot topics in research today! For those intrigued by the world of microbes, there are plenty of fascinating books and resources that delve deeper into this subject! “The Hidden Life of Trees” by Peter Wohlleben gives insights into how microorganisms interact with plants, while “Gut: The Inside Story of Our Body's Most Underrated Organ” by Giulia Enders explores the relationship between your gut microbiome and overall health. Happy reading!

Latest Biology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad