\begin{tabular}{l} Question \\ In \( \triangle W X Y, \overline{X Y} \cong \overline{W X} \) and \( \mathrm{m} \angle W=61^{\circ} \). Find \( \mathrm{m} \angle X \) \\ Answer Attempt 2 out of 3 \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
In triangle \( WXY \), you have \( XY \cong WX \), which means this is an isosceles triangle. In isosceles triangles, the angles opposite the equal sides are also equal. Therefore, since \( \overline{XY} \) and \( \overline{WX} \) are congruent, \( \angle X \) must be equal to \( \angle Y \). To find \( \angle X \), you can use the triangle angle sum property, which states that the sum of the angles in a triangle is \( 180^{\circ} \). Given that \( m\angle W = 61^{\circ} \), we can set up the equation: \[ \angle W + \angle X + \angle Y = 180^{\circ} \] Substituting \( \angle X = \angle Y \) gives: \[ 61^\circ + 2\angle X = 180^\circ \] Subtract \( 61^\circ \) from both sides: \[ 2\angle X = 119^\circ \] Now, divide by 2 to find \( m\angle X \): \[ \angle X = 59.5^\circ \] So, \( m\angle X = 59.5^\circ \).
