Pregunta
upstudy study bank question image url

Question
Solve the following inequality below for all values on the interval . Use interval notation to represent the solution set in the answer s)
below.

Ask by Ryan Tyler. in the United States
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality for is:

Solución

We start with the inequality
Step 1. Isolate the cosine squared term
Add 1 to both sides:
Now, divide both sides by 4:
Step 2. Take the square root
This inequality is equivalent to
which means
Step 3. Find the critical angles
We know that
Step 4. Determine the intervals where the inequality holds
The inequality means that the cosine value is between and . Over the interval this occurs in the following two arcs:
  • From to , where the cosine decreases from to .
  • From to , where the cosine increases from to .
Step 5. Write the final answer in interval notation
Thus, the solution set is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inequality , we first rewrite it as , which simplifies to . Taking the square root of both sides gives us . This means that is between and .
Now, we identify the angles in the interval where this is true. The cosine function is within this range in two intervals:
  1. From to .
Thus, the solution set in interval notation is:
Did you know that trigonometric inequalities like this one are not just abstract math problems? They pop up in real-world applications like sound waves and engineering vibrations! Engineers use cosine functions to model oscillations, so understanding how to solve such inequalities is crucial for analyzing systems behavior under various conditions.
If you’re curious about deepening your knowledge in trigonometry, consider exploring the world of Fourier series or the unit circle! These concepts are fundamental to signal processing, audio engineering, and even computer graphics, where they help encode information in sinusoidal functions. Plus, they can be quite mesmerizing as you visualize the rotations and transformations!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad