Pregunta
upstudy study bank question image url

The scores on a test are normally distributed with a mean of 100 and a standard deviation of 30 . Find the score that is \( 3 \frac{1}{2} \) standard deviations above the mean. A score of \( \square \) is \( 3 \frac{1}{2} \) standard deviations above the mean.

Ask by Moran Schmidt. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A score of 205 is \( 3 \frac{1}{2} \) standard deviations above the mean.

Solución

To find the score that is 3½ standard deviations above the mean, use the formula:  Score = Mean + (z-score × Standard Deviation) Here, Mean = 100, Standard Deviation = 30, and z-score = 3½ which is 3.5. So,  Score = 100 + (3.5 × 30)     = 100 + 105     = 205 Thus, a score of 205 is 3½ standard deviations above the mean.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the score that is \( 3 \frac{1}{2} \) standard deviations above the mean, we need to calculate it using the formula: \[ \text{Score} = \text{mean} + (z \times \text{standard deviation}) \] Here, the mean is 100, the standard deviation is 30, and \( z \) is \( 3.5 \). Plugging in the values: \[ \text{Score} = 100 + (3.5 \times 30) = 100 + 105 = 205. \] So, a score of \( 205 \) is \( 3 \frac{1}{2} \) standard deviations above the mean. --- Did you know that the concept of the normal distribution dates back to the 18th century, with the contributions of mathematicians like Pierre-Simon Laplace and Carl Friedrich Gauss? Gauss used it to model errors in astronomical observations, giving birth to the bell-shaped curve that we use today in statistics! In real-world applications, understanding how to interpret the normal distribution is crucial in fields like psychology and education, where test scores are analyzed. For instance, if you know the average test score and its variability, you can make informed decisions about curriculum adjustments, or even better target resources for student improvement based on where they fall in the distribution!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad