Find a. the mean; \( \mathbf{b} \). the deviation from the mean for each data item; and \( \mathbf{c} \). the sum of the deviations in part (b) for the following group of data items. \( 28,78,53,28,103 \) a. The mean is (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To calculate the mean, add up all the data items and then divide by the number of items. First, sum the numbers: \( 28 + 78 + 53 + 28 + 103 = 290 \). Now, divide by the number of items (which is 5): Mean = \( \frac{290}{5} = 58 \). So, the mean is **58**. Next, calculate the deviation from the mean for each data item: - \( 28 - 58 = -30 \) - \( 78 - 58 = 20 \) - \( 53 - 58 = -5 \) - \( 28 - 58 = -30 \) - \( 103 - 58 = 45 \) The deviations are \( -30, 20, -5, -30, 45 \). To find the sum of the deviations: \( -30 + 20 - 5 - 30 + 45 = 0 \). The sum of the deviations is **0**.
