Pregunta
upstudy study bank question image url

Find \( \frac{d y}{d x} \) by implicit differentiation. Then find the slope of the graph at the given point. (If an answer is undefined, enter UNDEFINED.) \[ \frac{d y}{d x}=\text { undefined } \] At \( (-6,-5): y^{\prime}=-\frac{5}{6}, \quad(-6,-5) \)

Ask by Pope Hammond. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find \( \frac{d y}{d x} \) by implicit differentiation, you need the original equation relating \( x \) and \( y \). Without that, it's impossible to determine the derivative. At the point \( (-6, -5) \), the slope \( y' \) is \( -\frac{5}{6} \).

Solución

To find \( \frac{d y}{d x} \) by implicit differentiation, we need to start with the equation that relates \( x \) and \( y \). However, it seems that the equation is not provided in your message. Let's assume we have an implicit function \( F(x, y) = 0 \). The process of implicit differentiation involves differentiating both sides of the equation with respect to \( x \) and applying the chain rule to terms involving \( y \). Here are the steps to find \( \frac{d y}{d x} \): 1. Differentiate both sides of the equation \( F(x, y) = 0 \) with respect to \( x \): \[ \frac{d}{dx} F(x, y) = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{d y}{d x} = 0 \] 2. Solve for \( \frac{d y}{d x} \): \[ \frac{\partial F}{\partial y} \frac{d y}{d x} = -\frac{\partial F}{\partial x} \] \[ \frac{d y}{d x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} \] 3. Substitute the values of \( x \) and \( y \) at the given point to find the slope. Since you mentioned that at the point \( (-6, -5) \), \( y' = -\frac{5}{6} \), we can conclude that the slope of the graph at that point is \( -\frac{5}{6} \). If you have a specific equation in mind, please provide it, and I can perform the implicit differentiation step-by-step for that equation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find \( \frac{dy}{dx} \) by implicit differentiation, we typically start with an equation that relates \( x \) and \( y \). However, in your case, it appears you've indicated that the derivative is undefined at the point \( (-6, -5) \). This can occur when there is a vertical tangent line at that point, which usually means the graph is either vertical or the slope does not exist. At the point \( (-6, -5) \), the slope of the graph is given as \( -\frac{5}{6} \). This suggests you still might be looking for the conditions under which this derivative can change or remain undefined. Often, these situations arise when analyzing the behavior of the functions near those specific points, particularly in cases of vertical tangents or cusps. To confirm the nature of the point and the derivative, it's always helpful to check the original equation. If we find \( \frac{dy}{dx} \) undefined, it typically points toward a vertical tangent, while slopes defined (like \( -\frac{5}{6} \)) indicate normal slopes that you could pursue further research on for deeper insights.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad