Find the volume of the solid of revolution formed by rotating the shaded area in Quadrant 1 between \( x=1 \) and \( x+2 y=7 \) about the \( y \)-axis. (graph not to scale)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the volume of the solid of revolution formed by rotating the shaded area about the \( y \)-axis, we first need to express the boundaries of the region in terms of \( y \). The line \( x + 2y = 7 \) can be rearranged to express \( x \): \[ x = 7 - 2y \] Next, we will determine the limits of integration. At \( x = 1 \), we can substitute this value into the equation of the line: \[ 1 = 7 - 2y \Rightarrow 2y = 6 \Rightarrow y = 3 \] Thus, the area of integration is bounded by \( y = 0 \) (the x-axis) and \( y = 3 \). Now, we can apply the disk method to calculate the volume \( V \): \[ V = \pi \int_{y=0}^{y=3} [r(y)]^2 \, dy \] Here, \( r(y) = 7 - 2y \). Therefore, the volume becomes: \[ V = \pi \int_{0}^{3} (7 - 2y)^2 \, dy \] Next, we will expand \( (7 - 2y)^2 \): \[ (7 - 2y)^2 = 49 - 28y + 4y^2 \] Now substituting this back into the integral gives: \[ V = \pi \int_{0}^{3} (49 - 28y + 4y^2) \, dy \] Now, we integrate term by term: \[ = \pi \left[ 49y - 14y^2 + \frac{4}{3}y^3 \right]_{0}^{3} \] Evaluating the expression at the bounds: \[ = \pi \left( [49 \cdot 3 - 14 \cdot 3^2 + \frac{4}{3} \cdot 3^3] - 0 \right) \] \[ = \pi \left( 147 - 126 + 36 \right) \] \[ = \pi \left( 57 \right) \] Therefore, the volume of the solid of revolution is: \[ \boxed{57\pi} \]
preguntas relacionadas
