Responder
After 30 years, you will have approximately \$416,129.32 in the account. You will have deposited a total of \$180,000, earning about \$236,129.32 in interest.
Solución
To solve this problem, we will use the formula for the future value of a series of cash flows (an annuity) compounded at a certain interest rate. The formula is:
\[
FV = P \times \frac{(1 + r)^n - 1}{r}
\]
Where:
- \( FV \) is the future value of the annuity.
- \( P \) is the amount deposited each period (monthly).
- \( r \) is the interest rate per period.
- \( n \) is the total number of periods.
### Given:
- Monthly deposit \( P = 500 \)
- Annual interest rate \( = 5\% \) or \( 0.05 \)
- Monthly interest rate \( r = \frac{0.05}{12} \)
- Total number of years \( = 30 \)
- Total number of months \( n = 30 \times 12 \)
Now, let's calculate each part step by step.
### Step 1: Calculate \( r \) and \( n \)
1. Monthly interest rate:
\[
r = \frac{0.05}{12}
\]
2. Total number of months:
\[
n = 30 \times 12
\]
### Step 2: Calculate the future value \( FV \)
Using the formula for future value, we can substitute the values we calculated.
### Step 3: Calculate the total money deposited
The total money deposited over 30 years is simply:
\[
\text{Total Deposits} = P \times n
\]
### Step 4: Calculate the total interest earned
The total interest earned can be calculated as:
\[
\text{Total Interest} = FV - \text{Total Deposits}
\]
Now, let's perform the calculations.
Calculate the value by following steps:
- step0: Calculate:
\(30\times 12\)
- step1: Multiply the numbers:
\(360\)
Calculate or simplify the expression \( 0.05/12 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.05}{12}\)
- step1: Convert the expressions:
\(\frac{\frac{1}{20}}{12}\)
- step2: Multiply by the reciprocal:
\(\frac{1}{20}\times \frac{1}{12}\)
- step3: Multiply the fractions:
\(\frac{1}{20\times 12}\)
- step4: Multiply:
\(\frac{1}{240}\)
Calculate or simplify the expression \( 500*360 \).
Calculate the value by following steps:
- step0: Calculate:
\(500\times 360\)
- step1: Multiply the numbers:
\(180000\)
Calculate or simplify the expression \( 500*((1+(0.004166666666666667))^360-1)/(0.004166666666666667) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{500\left(\left(1+\frac{4166666666666667}{1000000000000000000}\right)^{360}-1\right)}{\frac{4166666666666667}{1000000000000000000}}\)
- step1: Add the numbers:
\(\frac{500\left(\left(\frac{1004166666666666667}{1000000000000000000}\right)^{360}-1\right)}{\frac{4166666666666667}{1000000000000000000}}\)
- step2: Subtract the numbers:
\(\frac{500\times \frac{1004166666666666667^{360}-1000000000000000000^{360}}{1000000000000000000^{360}}}{\frac{4166666666666667}{1000000000000000000}}\)
- step3: Multiply the numbers:
\(\frac{\frac{1004166666666666667^{360}-1000000000000000000^{360}}{500^{2159}\times 64^{360}}}{\frac{4166666666666667}{1000000000000000000}}\)
- step4: Multiply by the reciprocal:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{500^{2159}\times 64^{360}}\times \frac{1000000000000000000}{4166666666666667}\)
- step5: Rewrite the expression:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{500^{2159}\times 64^{360}}\times \frac{15625000000000000\times 64}{4166666666666667}\)
- step6: Rewrite the expression:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{500^{2159}\times 64^{360}}\times \frac{500^{6}\times 64}{4166666666666667}\)
- step7: Reduce the numbers:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{500^{2153}\times 64^{360}}\times \frac{64}{4166666666666667}\)
- step8: Rewrite the expression:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{4^{2153}\times 125^{2153}\times 64^{360}}\times \frac{64}{4166666666666667}\)
- step9: Rewrite the expression:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{4^{2153}\times 125^{2153}\times 64^{360}}\times \frac{4^{3}}{4166666666666667}\)
- step10: Reduce the numbers:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{4^{2150}\times 125^{2153}\times 64^{360}}\times \frac{1}{4166666666666667}\)
- step11: Multiply the fractions:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{4^{3230}\times 125^{2153}\times 4166666666666667}\)
- step12: Multiply:
\(\frac{1004166666666666667^{360}-1000000000000000000^{360}}{4166666666666667\times 4^{3230}\times 125^{2153}}\)
Calculate or simplify the expression \( 416129.317681-180000 \).
Calculate the value by following steps:
- step0: Calculate:
\(416129.317681-180000\)
- step1: Subtract the numbers:
\(236129.317681\)
Now that we have performed the calculations, let's summarize the results for each part of the problem.
### a) Future Value in the Account After 30 Years
Using the future value formula, we found:
\[
FV \approx 416129.32
\]
So, you will have approximately **\$416,129.32** in the account after 30 years.
### b) Total Money Deposited
The total amount of money you will deposit into the account over 30 years is:
\[
\text{Total Deposits} = 500 \times 360 = 180000
\]
Thus, the total money deposited is **\$180,000**.
### c) Total Interest Earned
The total interest earned can be calculated as:
\[
\text{Total Interest} = FV - \text{Total Deposits} \approx 416129.32 - 180000 \approx 236129.32
\]
Therefore, the total interest earned is approximately **\$236,129.32**.
### Summary of Results:
- **Future Value in the Account:** \$416,129.32
- **Total Money Deposited:** \$180,000
- **Total Interest Earned:** \$236,129.32
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución