Responder
Here are the factored forms of the quadratic expressions:
11. \(12x^{2} + 13x + 3 = (3x + 1)(4x + 3)\)
12. \(21x^{2} - x - 2 = (7x + 2)(3x - 1)\)
13. \(12x^{2} + 5x - 3 = (3x - 1)(4x + 3)\)
14. \(6x^{2} - 23x + 7 = (3x - 1)(2x - 7)\)
15. \(2x^{2} + 5x - 12 = (2x - 3)(x + 4)\)
16. \(3x^{2} + 11x - 20 = (3x - 4)(x + 5)\)
17. \(7x^{2} + 5x - 2 = (7x - 2)(x + 1)\)
18. \(5x^{2} + 17x + 6 = (5x + 2)(x + 3)\)
19. \(13x^{2} - 27x + 2 = (13x - 1)(x - 2)\)
20. \(2x^{2} - 7x + 6 = (x - 2)(2x - 3)\)
21. \(6x^{2} + 7x - 5 = (2x - 1)(3x + 5)\)
22. \(8x^{2} - 14x + 3 = (4x - 1)(2x - 3)\)
Solución
Sure! It looks like you have a list of quadratic expressions from problems 11 to 22. Below, each quadratic is factored into the product of two binomials.
---
### 11. \(12x^{2} + 13x + 3\)
**Factored Form:** \((3x + 1)(4x + 3)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(12 \times 3 = 36\).
2. Find two numbers that multiply to 36 and add to 13. These numbers are 9 and 4.
3. Rewrite the middle term using these numbers: \(12x^2 + 9x + 4x + 3\).
4. Factor by grouping:
\[
3x(4x + 3) + 1(4x + 3) = (3x + 1)(4x + 3)
\]
---
### 12. \(21x^{2} - x - 2\)
**Factored Form:** \((7x + 2)(3x - 1)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(21 \times (-2) = -42\).
2. Find two numbers that multiply to -42 and add to -1. These numbers are -7 and 6.
3. Rewrite the middle term: \(21x^2 - 7x + 6x - 2\).
4. Factor by grouping:
\[
7x(3x - 1) + 2(3x - 1) = (7x + 2)(3x - 1)
\]
---
### 13. \(12x^{2} + 5x - 3\)
**Factored Form:** \((3x - 1)(4x + 3)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(12 \times (-3) = -36\).
2. Find two numbers that multiply to -36 and add to 5. These numbers are 9 and -4.
3. Rewrite the middle term: \(12x^2 + 9x - 4x - 3\).
4. Factor by grouping:
\[
3x(4x + 3) - 1(4x + 3) = (3x - 1)(4x + 3)
\]
---
### 14. \(6x^{2} - 23x + 7\)
**Factored Form:** \((3x - 1)(2x - 7)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(6 \times 7 = 42\).
2. Find two numbers that multiply to 42 and add to -23. These numbers are -21 and -2.
3. Rewrite the middle term: \(6x^2 - 21x - 2x + 7\).
4. Factor by grouping:
\[
3x(2x - 7) - 1(2x - 7) = (3x - 1)(2x - 7)
\]
---
### 15. \(2x^{2} + 5x - 12\)
**Factored Form:** \((2x - 3)(x + 4)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(2 \times (-12) = -24\).
2. Find two numbers that multiply to -24 and add to 5. These numbers are 8 and -3.
3. Rewrite the middle term: \(2x^2 + 8x - 3x - 12\).
4. Factor by grouping:
\[
2x(x + 4) - 3(x + 4) = (2x - 3)(x + 4)
\]
---
### 16. \(3x^{2} + 11x - 20\)
**Factored Form:** \((3x - 4)(x + 5)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(3 \times (-20) = -60\).
2. Find two numbers that multiply to -60 and add to 11. These numbers are 15 and -4.
3. Rewrite the middle term: \(3x^2 + 15x - 4x - 20\).
4. Factor by grouping:
\[
3x(x + 5) - 4(x + 5) = (3x - 4)(x + 5)
\]
---
### 17. \(7x^{2} + 5x - 2\)
**Factored Form:** \((7x - 2)(x + 1)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(7 \times (-2) = -14\).
2. Find two numbers that multiply to -14 and add to 5. These numbers are 7 and -2.
3. Rewrite the middle term: \(7x^2 + 7x - 2x - 2\).
4. Factor by grouping:
\[
7x(x + 1) - 2(x + 1) = (7x - 2)(x + 1)
\]
---
### 18. \(5x^{2} + 17x + 6\)
**Factored Form:** \((5x + 2)(x + 3)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(5 \times 6 = 30\).
2. Find two numbers that multiply to 30 and add to 17. These numbers are 15 and 2.
3. Rewrite the middle term: \(5x^2 + 15x + 2x + 6\).
4. Factor by grouping:
\[
5x(x + 3) + 2(x + 3) = (5x + 2)(x + 3)
\]
---
### 19. \(13x^{2} - 27x + 2\)
**Factored Form:** \((13x - 1)(x - 2)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(13 \times 2 = 26\).
2. Find two numbers that multiply to 26 and add to -27. These numbers are -26 and -1.
3. Rewrite the middle term: \(13x^2 - 26x - x + 2\).
4. Factor by grouping:
\[
13x(x - 2) - 1(x - 2) = (13x - 1)(x - 2)
\]
---
### 20. \(2x^{2} - 7x + 6\)
**Factored Form:** \((x - 2)(2x - 3)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(2 \times 6 = 12\).
2. Find two numbers that multiply to 12 and add to -7. These numbers are -3 and -4.
3. Rewrite the middle term: \(2x^2 - 3x - 4x + 6\).
4. Factor by grouping:
\[
x(2x - 3) - 2(2x - 3) = (x - 2)(2x - 3)
\]
---
### 21. \(6x^{2} + 7x - 5\)
**Factored Form:** \((2x - 1)(3x + 5)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(6 \times (-5) = -30\).
2. Find two numbers that multiply to -30 and add to 7. These numbers are 10 and -3.
3. Rewrite the middle term: \(6x^2 + 10x - 3x - 5\).
4. Factor by grouping:
\[
2x(3x + 5) - 1(3x + 5) = (2x - 1)(3x + 5)
\]
---
### 22. \(8x^{2} - 14x + 3\)
**Factored Form:** \((4x - 1)(2x - 3)\)
**Steps:**
1. Multiply the coefficient of \(x^2\) and the constant term: \(8 \times 3 = 24\).
2. Find two numbers that multiply to 24 and add to -14. These numbers are -12 and -2.
3. Rewrite the middle term: \(8x^2 - 12x - 2x + 3\).
4. Factor by grouping:
\[
4x(2x - 3) - 1(2x - 3) = (4x - 1)(2x - 3)
\]
---
Feel free to ask if you need further explanations or assistance with related problems!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución