Pregunta
upstudy study bank question image url

\( \begin{array}{llll}\text { 11. } & 12 x^{2}+13 x+3 & \text { 12. } & 21 x^{2}-x-2 \\ \text { 13. } & 12 x^{2}+5 x-3 & \text { 14. } & 6 x^{2}-23 x+7 \\ \text { 15. } & 2 x^{2}+5 x-12 & \text { 16. } & 3 x^{2}+11 x-20 \\ \text { 17. } 7 x^{2}+5 x-2 & \text { 18. } & 5 x^{2}+17 x+6 \\ \text { 19. } 13 x^{2}-27 x+2 & \text { 20. } & 2 x^{2}-7 x+6 \\ \text { 21. } 6 x^{2}+7 x-5 & \text { 22. } & 8 x^{2}-14 x+3\end{array} \)

Ask by Dawson Gibson. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factored forms of the quadratic expressions: 11. \(12x^{2} + 13x + 3 = (3x + 1)(4x + 3)\) 12. \(21x^{2} - x - 2 = (7x + 2)(3x - 1)\) 13. \(12x^{2} + 5x - 3 = (3x - 1)(4x + 3)\) 14. \(6x^{2} - 23x + 7 = (3x - 1)(2x - 7)\) 15. \(2x^{2} + 5x - 12 = (2x - 3)(x + 4)\) 16. \(3x^{2} + 11x - 20 = (3x - 4)(x + 5)\) 17. \(7x^{2} + 5x - 2 = (7x - 2)(x + 1)\) 18. \(5x^{2} + 17x + 6 = (5x + 2)(x + 3)\) 19. \(13x^{2} - 27x + 2 = (13x - 1)(x - 2)\) 20. \(2x^{2} - 7x + 6 = (x - 2)(2x - 3)\) 21. \(6x^{2} + 7x - 5 = (2x - 1)(3x + 5)\) 22. \(8x^{2} - 14x + 3 = (4x - 1)(2x - 3)\)

Solución

Sure! It looks like you have a list of quadratic expressions from problems 11 to 22. Below, each quadratic is factored into the product of two binomials. --- ### 11. \(12x^{2} + 13x + 3\) **Factored Form:** \((3x + 1)(4x + 3)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(12 \times 3 = 36\). 2. Find two numbers that multiply to 36 and add to 13. These numbers are 9 and 4. 3. Rewrite the middle term using these numbers: \(12x^2 + 9x + 4x + 3\). 4. Factor by grouping: \[ 3x(4x + 3) + 1(4x + 3) = (3x + 1)(4x + 3) \] --- ### 12. \(21x^{2} - x - 2\) **Factored Form:** \((7x + 2)(3x - 1)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(21 \times (-2) = -42\). 2. Find two numbers that multiply to -42 and add to -1. These numbers are -7 and 6. 3. Rewrite the middle term: \(21x^2 - 7x + 6x - 2\). 4. Factor by grouping: \[ 7x(3x - 1) + 2(3x - 1) = (7x + 2)(3x - 1) \] --- ### 13. \(12x^{2} + 5x - 3\) **Factored Form:** \((3x - 1)(4x + 3)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(12 \times (-3) = -36\). 2. Find two numbers that multiply to -36 and add to 5. These numbers are 9 and -4. 3. Rewrite the middle term: \(12x^2 + 9x - 4x - 3\). 4. Factor by grouping: \[ 3x(4x + 3) - 1(4x + 3) = (3x - 1)(4x + 3) \] --- ### 14. \(6x^{2} - 23x + 7\) **Factored Form:** \((3x - 1)(2x - 7)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(6 \times 7 = 42\). 2. Find two numbers that multiply to 42 and add to -23. These numbers are -21 and -2. 3. Rewrite the middle term: \(6x^2 - 21x - 2x + 7\). 4. Factor by grouping: \[ 3x(2x - 7) - 1(2x - 7) = (3x - 1)(2x - 7) \] --- ### 15. \(2x^{2} + 5x - 12\) **Factored Form:** \((2x - 3)(x + 4)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(2 \times (-12) = -24\). 2. Find two numbers that multiply to -24 and add to 5. These numbers are 8 and -3. 3. Rewrite the middle term: \(2x^2 + 8x - 3x - 12\). 4. Factor by grouping: \[ 2x(x + 4) - 3(x + 4) = (2x - 3)(x + 4) \] --- ### 16. \(3x^{2} + 11x - 20\) **Factored Form:** \((3x - 4)(x + 5)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(3 \times (-20) = -60\). 2. Find two numbers that multiply to -60 and add to 11. These numbers are 15 and -4. 3. Rewrite the middle term: \(3x^2 + 15x - 4x - 20\). 4. Factor by grouping: \[ 3x(x + 5) - 4(x + 5) = (3x - 4)(x + 5) \] --- ### 17. \(7x^{2} + 5x - 2\) **Factored Form:** \((7x - 2)(x + 1)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(7 \times (-2) = -14\). 2. Find two numbers that multiply to -14 and add to 5. These numbers are 7 and -2. 3. Rewrite the middle term: \(7x^2 + 7x - 2x - 2\). 4. Factor by grouping: \[ 7x(x + 1) - 2(x + 1) = (7x - 2)(x + 1) \] --- ### 18. \(5x^{2} + 17x + 6\) **Factored Form:** \((5x + 2)(x + 3)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(5 \times 6 = 30\). 2. Find two numbers that multiply to 30 and add to 17. These numbers are 15 and 2. 3. Rewrite the middle term: \(5x^2 + 15x + 2x + 6\). 4. Factor by grouping: \[ 5x(x + 3) + 2(x + 3) = (5x + 2)(x + 3) \] --- ### 19. \(13x^{2} - 27x + 2\) **Factored Form:** \((13x - 1)(x - 2)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(13 \times 2 = 26\). 2. Find two numbers that multiply to 26 and add to -27. These numbers are -26 and -1. 3. Rewrite the middle term: \(13x^2 - 26x - x + 2\). 4. Factor by grouping: \[ 13x(x - 2) - 1(x - 2) = (13x - 1)(x - 2) \] --- ### 20. \(2x^{2} - 7x + 6\) **Factored Form:** \((x - 2)(2x - 3)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(2 \times 6 = 12\). 2. Find two numbers that multiply to 12 and add to -7. These numbers are -3 and -4. 3. Rewrite the middle term: \(2x^2 - 3x - 4x + 6\). 4. Factor by grouping: \[ x(2x - 3) - 2(2x - 3) = (x - 2)(2x - 3) \] --- ### 21. \(6x^{2} + 7x - 5\) **Factored Form:** \((2x - 1)(3x + 5)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(6 \times (-5) = -30\). 2. Find two numbers that multiply to -30 and add to 7. These numbers are 10 and -3. 3. Rewrite the middle term: \(6x^2 + 10x - 3x - 5\). 4. Factor by grouping: \[ 2x(3x + 5) - 1(3x + 5) = (2x - 1)(3x + 5) \] --- ### 22. \(8x^{2} - 14x + 3\) **Factored Form:** \((4x - 1)(2x - 3)\) **Steps:** 1. Multiply the coefficient of \(x^2\) and the constant term: \(8 \times 3 = 24\). 2. Find two numbers that multiply to 24 and add to -14. These numbers are -12 and -2. 3. Rewrite the middle term: \(8x^2 - 12x - 2x + 3\). 4. Factor by grouping: \[ 4x(2x - 3) - 1(2x - 3) = (4x - 1)(2x - 3) \] --- Feel free to ask if you need further explanations or assistance with related problems!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the quadratic formula, which helps solve equations like those provided, has a rich history? It traces back to ancient Babylonians who solved quadratic equations using geometrical methods! They didn't have the formula we use today, but they understood the principles behind finding roots. Fast forward to the 17th century, where mathematicians like René Descartes formalized it into the \( x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} \) we know and love today! When tackling quadratic equations, common pitfalls include neglecting to factor completely or forgetting to apply the negative sign when using the quadratic formula. A fun tip: always double-check your calculations and consider plotting the equation to visualize where the roots lie! This can help you spot mistakes and ensure you’ve captured all potential solutions. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad