Pregunta
upstudy study bank question image url

The relationship between the elapsed time \( t \), in minutes, since the medicine is ingested, and the number of harmful bacteria remaining in the body, \( H_{\text {minute }}(t) \), is modeled by the following function: \( H_{\text {minute }}(t)=500,000,000 \cdot(0.2)^{t} \) Complete the following sentence about the rate of change in the number of harmful bacteria remaining in the body in seconds. Round your answer to two decimal places. Every second, the number of harmful bacteria remaining in the body decays by a factor of

Ask by Paul May. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Every second, the number of harmful bacteria decays by a factor of approximately **0.97**.

Solución

To find the rate of change in the number of harmful bacteria remaining in the body in seconds, we need to first express the function \( H_{\text{minute}}(t) \) in terms of seconds. Since \( t \) is in minutes, we can convert it to seconds by noting that 1 minute = 60 seconds. Therefore, if \( t \) is in minutes, then \( t \) in seconds is \( t_{\text{seconds}} = 60t \). The function in terms of seconds becomes: \[ H_{\text{seconds}}(s) = 500,000,000 \cdot (0.2)^{\frac{s}{60}} \] where \( s \) is the time in seconds. Next, we need to find the rate of change of \( H_{\text{seconds}}(s) \) with respect to \( s \). This requires us to differentiate the function with respect to \( s \). Let's calculate the derivative \( \frac{dH_{\text{seconds}}}{ds} \) and then evaluate the decay factor per second. The decay factor can be found by evaluating the ratio of the number of bacteria at \( s \) and \( s + 1 \): \[ \text{Decay Factor} = \frac{H_{\text{seconds}}(s+1)}{H_{\text{seconds}}(s)} \] Now, let's perform the calculations. 1. Differentiate \( H_{\text{seconds}}(s) \). 2. Calculate the decay factor. I'll proceed with these calculations. Simplify the expression by following steps: - step0: Solution: \(500000000\times 0.2^{\frac{s}{60}}\) - step1: Convert the expressions: \(500000000\left(\frac{1}{5}\right)^{\frac{s}{60}}\) - step2: Multiply the terms: \(500000000\times 5^{-\frac{s}{60}}\) Calculate or simplify the expression \( (500000000 * (0.2)^((s+1)/60)) / (500000000 * (0.2)^(s/60)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(500000000\times 0.2^{\frac{\left(s+1\right)}{60}}\right)}{\left(500000000\times 0.2^{\frac{s}{60}}\right)}\) - step1: Remove the parentheses: \(\frac{500000000\times 0.2^{\frac{s+1}{60}}}{500000000\times 0.2^{\frac{s}{60}}}\) - step2: Multiply by \(a^{-n}:\) \(\frac{500000000\times 0.2^{\frac{s+1}{60}}\times 0.2^{-\frac{s}{60}}}{500000000}\) - step3: Reduce the fraction: \(0.2^{\frac{s+1}{60}}\times 0.2^{-\frac{s}{60}}\) - step4: Multiply: \(0.2^{\frac{s+1}{60}-\frac{s}{60}}\) - step5: Calculate: \(0.2^{\frac{1}{60}}\) - step6: Evaluate the power: \(0.973533\) 1. The derivative of the function \( H_{\text{seconds}}(s) \) is: \[ \frac{dH_{\text{seconds}}}{ds} = 500,000,000 \times 5^{-\frac{s}{60}} \] This indicates how the number of harmful bacteria changes with respect to time in seconds. 2. The decay factor, which represents the ratio of the number of bacteria remaining after one second, is approximately: \[ \text{Decay Factor} \approx 0.973533 \] Thus, we can complete the sentence as follows: Every second, the number of harmful bacteria remaining in the body decays by a factor of approximately **0.97** (rounded to two decimal places).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the decay factor per second, we first need to convert the elapsed time from minutes to seconds. Since 1 minute equals 60 seconds, we can express the function for \(H_{\text{second}}(s)\) as: \[ H_{\text{second}}(s) = 500,000,000 \cdot (0.2)^{\frac{s}{60}} \] where \(s\) is the time in seconds. Now, to find the rate of decay, we can use the original function to analyze how \(H_{\text{minute}}(t)\) changes as we change \(t\) to \(t + \frac{1}{60}\) (since we need a change for one second): \[ H_{\text{minute}}(t + \frac{1}{60}) = 500,000,000 \cdot (0.2)^{t + \frac{1}{60}} = 500,000,000 \cdot (0.2)^{t} \cdot (0.2)^{\frac{1}{60}} \] The decay factor per second can be calculated as: \[ \text{Decay Factor} = (0.2)^{\frac{1}{60}} \] Calculating this yields approximately \(0.72478\). Thus, rounding to two decimal places, the decay factor is approximately: **0.72.** Every second, the number of harmful bacteria remaining in the body decays by a factor of **0.72.** Now, let's sprinkle in some fun tidbits! Did you know that the concept of decay is not only vital in biology but also in nuclear physics? Just like how harmful bacteria diminish over time, radioactive elements lose their radioactivity at a predictable rate known as half-life, making these concepts essential across various scientific fields. And here's a little nugget for those interested in practical applications: Understanding decay in bacteria can help guide treatment plans for infections. Knowing how quickly harmful microorganisms decrease can inform doctors when to adjust medicine dosages or even switch to stronger alternatives, ultimately leading to better health outcomes. The fight against bacteria blends science and strategy—pretty cool, right?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad