Use implicit differentiation to find \( \frac{d y}{d x} \) \( 5 y^{2}=\frac{3 x-2}{3 x+2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find \( \frac{d y}{d x} \) using implicit differentiation, we start with the equation \( 5 y^{2} = \frac{3 x - 2}{3 x + 2} \). First, differentiate both sides with respect to \( x \). For the left side, we have: \[ \frac{d}{dx}(5y^{2}) = 10y \frac{dy}{dx} \] For the right side, we use the quotient rule: \[ \frac{d}{dx}\left(\frac{3x - 2}{3x + 2}\right) = \frac{(3)(3x + 2) - (3)(3x - 2)}{(3x + 2)^{2}} = \frac{9x + 6 - (9x - 6)}{(3x + 2)^{2}} = \frac{12}{(3x + 2)^{2}} \] Now, we set the derivatives equal to each other: \[ 10y \frac{dy}{dx} = \frac{12}{(3x + 2)^{2}} \] To solve for \( \frac{dy}{dx} \), we rearrange the equation: \[ \frac{dy}{dx} = \frac{12}{10y(3x + 2)^{2}} = \frac{6}{5y(3x + 2)^{2}} \] Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{6}{5y(3x + 2)^{2}} \]
