Pregunta
upstudy study bank question image url

Find all \( x \)-values where the line tangent to the curve \( F(x)=\left(x^{2}-14 x+24\right)^{700} \) is horizontal. Separate multiple answers with a comma. If there are no \( x \)-values where the curve has a horizontal tangent, write None for your answer.

Ask by Reeves Craig. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The \( x \)-values where the tangent to the curve is horizontal are 2, 7, and 12.

Solución

To find the \( x \)-values where the line tangent to the curve \( F(x)=\left(x^{2}-14x+24\right)^{700} \) is horizontal, we need to find the values of \( x \) for which the derivative of the function is equal to zero. The derivative of \( F(x) \) with respect to \( x \) is given by: \[ F'(x) = 700\left(x^{2}-14x+24\right)^{699} \cdot (2x-14) \] To find the values of \( x \) where the tangent line is horizontal, we set the derivative equal to zero and solve for \( x \): \[ 700\left(x^{2}-14x+24\right)^{699} \cdot (2x-14) = 0 \] Solving this equation will give us the \( x \)-values where the tangent line is horizontal. Let's solve it. Solve the equation by following steps: - step0: Solve for \(x\): \(700\left(x^{2}-14x+24\right)^{699}\left(2x-14\right)=0\) - step1: Elimination the left coefficient: \(\left(x^{2}-14x+24\right)^{699}\left(2x-14\right)=0\) - step2: Separate into possible cases: \(\begin{align}&\left(x^{2}-14x+24\right)^{699}=0\\&2x-14=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=12\\&x=2\\&x=7\end{align}\) - step4: Rewrite: \(x_{1}=2,x_{2}=7,x_{3}=12\) The \( x \)-values where the line tangent to the curve \( F(x)=\left(x^{2}-14x+24\right)^{700} \) is horizontal are \( x = 2, 7, 12 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the \( x \)-values where the line tangent to the curve \( F(x) = (x^2 - 14x + 24)^{700} \) is horizontal, we first need to compute the derivative \( F'(x) \) using the chain rule. The derivative of \( F(x) \) is given by: \[ F'(x) = 700 (x^2 - 14x + 24)^{699} \cdot (2x - 14). \] Setting \( F'(x) = 0 \) will help us find where the tangent is horizontal. This occurs when either factor in the product is zero: 1. \( (x^2 - 14x + 24)^{699} = 0 \) 2. \( 2x - 14 = 0 \) From the first equation, we have: \[ x^2 - 14x + 24 = 0. \] Factoring this quadratic, we find: \[ (x - 12)(x - 2) = 0, \] which gives the solutions \( x = 12 \) and \( x = 2 \). Now, for the second equation, we solve: \[ 2x - 14 = 0 \implies x = 7. \] Putting everything together, the \( x \)-values where the curve has a horizontal tangent are: \[ x = 2, 7, 12. \] Thus, the final answer is: \[ 2, 7, 12. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad