Pregunta
Using de Moivre’s theorem to compute
we find that the answer is
None of the others
None of the others
Ask by Patel Stephens. in Australia
Mar 23,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The answer is
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
To solve
using de Moivre’s theorem, we first need to convert the complex number into polar form. The modulus
is computed as
. The argument
can be found using
(in the third quadrant).
Now in polar form, the complex number is
. According to de Moivre’s theorem, we can raise it to the power of 9:
Evaluating
and simplifying the angle
, which can be adjusted to
(as
), we can find
.
Combining these, we get:
So, the correct answer is
.
The next step would be ensuring understanding of de Moivre’s theorem. It’s a nifty formula in mathematics that allows you to raise complex numbers to powers swiftly by converting them into polar coordinates. Remember, turning complex numbers into their polar form transforms multiplication and exponentiation into much simpler trigonometric calculations—just keep an eye on those angles!
When dealing with complex numbers, always pay attention to the quadrant your result lands in. Keep track of your angles, especially when converting back and forth between radians and degrees, as small mistakes in quadrant identification can lead to significant errors in your final answer.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium