Find the standard deviation for the following group of data items. \( 6,11,11,19 \) The standard deviation is approximately (Round to two decimal places as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To calculate the standard deviation, first find the mean (average) of the data set: Mean = \( \frac{(6 + 11 + 11 + 19)}{4} = \frac{47}{4} = 11.75 \) Next, find the squared differences from the mean: 1. \( (6 - 11.75)^2 = (-5.75)^2 = 33.0625 \) 2. \( (11 - 11.75)^2 = (-0.75)^2 = 0.5625 \) 3. \( (11 - 11.75)^2 = (-0.75)^2 = 0.5625 \) 4. \( (19 - 11.75)^2 = (7.25)^2 = 52.5625 \) Now, sum these squared differences: \( 33.0625 + 0.5625 + 0.5625 + 52.5625 = 86.75 \) Next, divide by the number of data items minus one (N-1) for sample standard deviation: Variance = \( \frac{86.75}{4 - 1} = \frac{86.75}{3} \approx 28.9167 \) Finally, take the square root of the variance to find the standard deviation: Standard Deviation = \( \sqrt{28.9167} \approx 5.38 \) So, the standard deviation is approximately **5.38** (rounded to two decimal places).
