Solución
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-2x-3=0\)
- step1: Factor the expression:
\(\left(x-3\right)\left(x+1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-3=0\\&x+1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=3\\&x=-1\end{align}\)
- step4: Rewrite:
\(x_{1}=-1,x_{2}=3\)
Solve the equation \( \frac{x^{2}-4x+4}{x^{2}-x-2}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{x^{2}-4x+4}{x^{2}-x-2}=0\)
- step1: Find the domain:
\(\frac{x^{2}-4x+4}{x^{2}-x-2}=0,x \in \left(-\infty,-1\right)\cup \left(-1,2\right)\cup \left(2,+\infty\right)\)
- step2: Divide the terms:
\(\frac{x-2}{x+1}=0\)
- step3: Cross multiply:
\(x-2=\left(x+1\right)\times 0\)
- step4: Simplify the equation:
\(x-2=0\)
- step5: Move the constant to the right side:
\(x=0+2\)
- step6: Remove 0:
\(x=2\)
- step7: Check if the solution is in the defined range:
\(x=2,x \in \left(-\infty,-1\right)\cup \left(-1,2\right)\cup \left(2,+\infty\right)\)
- step8: Find the intersection:
\(x \in \varnothing \)
Solve the equation \( 2x^{2}+13x+20=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(2x^{2}+13x+20=0\)
- step1: Factor the expression:
\(\left(x+4\right)\left(2x+5\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&2x+5=0\\&x+4=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=-\frac{5}{2}\\&x=-4\end{align}\)
- step4: Rewrite:
\(x_{1}=-4,x_{2}=-\frac{5}{2}\)
Solve the equation \( \frac{\sin^{2}(2x)}{5x^{2}}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sin^{2}\left(2x\right)}{5x^{2}}=0\)
- step1: Find the domain:
\(\frac{\sin^{2}\left(2x\right)}{5x^{2}}=0,x\neq 0\)
- step2: Cross multiply:
\(\sin^{2}\left(2x\right)=5x^{2}\times 0\)
- step3: Simplify the equation:
\(\sin^{2}\left(2x\right)=0\)
- step4: Set the base equal to 0:
\(\sin\left(2x\right)=0\)
- step5: Use the inverse trigonometric function:
\(2x=\arcsin\left(0\right)\)
- step6: Calculate:
\(2x=0\)
- step7: Add the period:
\(2x=k\pi ,k \in \mathbb{Z}\)
- step8: Solve the equation:
\(x=\frac{k\pi }{2},k \in \mathbb{Z}\)
- step9: Check if the solution is in the defined range:
\(x=\frac{k\pi }{2},k \in \mathbb{Z},x\neq 0\)
- step10: Find the intersection:
\(x=\frac{k\pi }{2},k \in \left(-\infty,0\right),k \in \mathbb{Z}\cup k \in \left(0,+\infty\right),k \in \mathbb{Z}\)
Solve the equation \( \frac{\sqrt(25-x^{2})-5}{x}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sqrt{25-x^{2}}-5}{x}=0\)
- step1: Find the domain:
\(\frac{\sqrt{25-x^{2}}-5}{x}=0,x \in \left[-5,0\right)\cup \left(0,5\right]\)
- step2: Cross multiply:
\(\sqrt{25-x^{2}}-5=x\times 0\)
- step3: Simplify the equation:
\(\sqrt{25-x^{2}}-5=0\)
- step4: Move the constant to the right-hand side:
\(\sqrt{25-x^{2}}=5\)
- step5: Raise both sides to the \(2\)-th power\(:\)
\(\left(\sqrt{25-x^{2}}\right)^{2}=5^{2}\)
- step6: Evaluate the power:
\(25-x^{2}=25\)
- step7: Move the constant to the right side:
\(-x^{2}=25-25\)
- step8: Subtract the terms:
\(-x^{2}=0\)
- step9: Change the signs:
\(x^{2}=0\)
- step10: Set the base equal to 0:
\(x=0\)
- step11: Check if the solution is in the defined range:
\(x=0,x \in \left[-5,0\right)\cup \left(0,5\right]\)
- step12: Find the intersection:
\(x \in \varnothing \)
Solve the equation \( \frac{\sin(3x)}{\sin(5x)}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sin\left(3x\right)}{\sin\left(5x\right)}=0\)
- step1: Find the domain:
\(\frac{\sin\left(3x\right)}{\sin\left(5x\right)}=0,x\neq \frac{k\pi }{5},k \in \mathbb{Z}\)
- step2: Cross multiply:
\(\sin\left(3x\right)=\sin\left(5x\right)\times 0\)
- step3: Simplify the equation:
\(\sin\left(3x\right)=0\)
- step4: Use the inverse trigonometric function:
\(3x=\arcsin\left(0\right)\)
- step5: Calculate:
\(3x=0\)
- step6: Add the period:
\(3x=k\pi ,k \in \mathbb{Z}\)
- step7: Solve the equation:
\(x=\frac{k\pi }{3},k \in \mathbb{Z}\)
- step8: Check if the solution is in the defined range:
\(x=\frac{k\pi }{3},k \in \mathbb{Z},x\neq \frac{k\pi }{5},k \in \mathbb{Z}\)
- step9: Find the intersection:
\(x=\left\{ \begin{array}{l}\frac{\pi }{3}+k\pi \\\frac{2\pi }{3}+k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \frac{5x^{2}+3x-1}{4x^{2}+5}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{5x^{2}+3x-1}{4x^{2}+5}=0\)
- step1: Cross multiply:
\(5x^{2}+3x-1=\left(4x^{2}+5\right)\times 0\)
- step2: Simplify the equation:
\(5x^{2}+3x-1=0\)
- step3: Solve using the quadratic formula:
\(x=\frac{-3\pm \sqrt{3^{2}-4\times 5\left(-1\right)}}{2\times 5}\)
- step4: Simplify the expression:
\(x=\frac{-3\pm \sqrt{3^{2}-4\times 5\left(-1\right)}}{10}\)
- step5: Simplify the expression:
\(x=\frac{-3\pm \sqrt{29}}{10}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-3+\sqrt{29}}{10}\\&x=\frac{-3-\sqrt{29}}{10}\end{align}\)
- step7: Rewrite the fraction:
\(\begin{align}&x=\frac{-3+\sqrt{29}}{10}\\&x=-\frac{3+\sqrt{29}}{10}\end{align}\)
- step8: Rewrite:
\(x_{1}=-\frac{3+\sqrt{29}}{10},x_{2}=\frac{-3+\sqrt{29}}{10}\)
Solve the equation \( \frac{\sin(5x)}{\tan(9x)}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sin\left(5x\right)}{\tan\left(9x\right)}=0\)
- step1: Find the domain:
\(\frac{\sin\left(5x\right)}{\tan\left(9x\right)}=0,x\neq \frac{k\pi }{18},k \in \mathbb{Z}\)
- step2: Cross multiply:
\(\sin\left(5x\right)=\tan\left(9x\right)\times 0\)
- step3: Simplify the equation:
\(\sin\left(5x\right)=0\)
- step4: Use the inverse trigonometric function:
\(5x=\arcsin\left(0\right)\)
- step5: Calculate:
\(5x=0\)
- step6: Add the period:
\(5x=k\pi ,k \in \mathbb{Z}\)
- step7: Solve the equation:
\(x=\frac{k\pi }{5},k \in \mathbb{Z}\)
- step8: Check if the solution is in the defined range:
\(x=\frac{k\pi }{5},k \in \mathbb{Z},x\neq \frac{k\pi }{18},k \in \mathbb{Z}\)
- step9: Find the intersection:
\(x=\left\{ \begin{array}{l}\frac{\pi }{5}+k\pi \\\frac{2\pi }{5}+k\pi \\\frac{3\pi }{5}+k\pi \\\frac{4\pi }{5}+k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \frac{\sqrt(x+10)-4}{x-6}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sqrt{x+10}-4}{x-6}=0\)
- step1: Find the domain:
\(\frac{\sqrt{x+10}-4}{x-6}=0,x \in \left[-10,6\right)\cup \left(6,+\infty\right)\)
- step2: Cross multiply:
\(\sqrt{x+10}-4=\left(x-6\right)\times 0\)
- step3: Simplify the equation:
\(\sqrt{x+10}-4=0\)
- step4: Move the constant to the right-hand side:
\(\sqrt{x+10}=4\)
- step5: Raise both sides to the \(2\)-th power\(:\)
\(\left(\sqrt{x+10}\right)^{2}=4^{2}\)
- step6: Evaluate the power:
\(x+10=16\)
- step7: Move the constant to the right side:
\(x=16-10\)
- step8: Subtract the numbers:
\(x=6\)
- step9: Check if the solution is in the defined range:
\(x=6,x \in \left[-10,6\right)\cup \left(6,+\infty\right)\)
- step10: Find the intersection:
\(x \in \varnothing \)
Solve the equation \( \frac{\sin(6x)}{4x}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sin\left(6x\right)}{4x}=0\)
- step1: Find the domain:
\(\frac{\sin\left(6x\right)}{4x}=0,x\neq 0\)
- step2: Cross multiply:
\(\sin\left(6x\right)=4x\times 0\)
- step3: Simplify the equation:
\(\sin\left(6x\right)=0\)
- step4: Use the inverse trigonometric function:
\(6x=\arcsin\left(0\right)\)
- step5: Calculate:
\(6x=0\)
- step6: Add the period:
\(6x=k\pi ,k \in \mathbb{Z}\)
- step7: Solve the equation:
\(x=\frac{k\pi }{6},k \in \mathbb{Z}\)
- step8: Check if the solution is in the defined range:
\(x=\frac{k\pi }{6},k \in \mathbb{Z},x\neq 0\)
- step9: Find the intersection:
\(x=\frac{k\pi }{6},k \in \left(-\infty,0\right),k \in \mathbb{Z}\cup k \in \left(0,+\infty\right),k \in \mathbb{Z}\)
Solve the equation \( \frac{\sqrt(x+4)-3}{\sqrt(x-1)-2}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sqrt{x+4}-3}{\sqrt{x-1}-2}=0\)
- step1: Find the domain:
\(\frac{\sqrt{x+4}-3}{\sqrt{x-1}-2}=0,x \in \left[1,5\right)\cup \left(5,+\infty\right)\)
- step2: Cross multiply:
\(\sqrt{x+4}-3=\left(\sqrt{x-1}-2\right)\times 0\)
- step3: Simplify the equation:
\(\sqrt{x+4}-3=0\)
- step4: Move the constant to the right-hand side:
\(\sqrt{x+4}=3\)
- step5: Raise both sides to the \(2\)-th power\(:\)
\(\left(\sqrt{x+4}\right)^{2}=3^{2}\)
- step6: Evaluate the power:
\(x+4=9\)
- step7: Move the constant to the right side:
\(x=9-4\)
- step8: Subtract the numbers:
\(x=5\)
- step9: Check if the solution is in the defined range:
\(x=5,x \in \left[1,5\right)\cup \left(5,+\infty\right)\)
- step10: Find the intersection:
\(x \in \varnothing \)
Solve the equation \( 3x-12=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3x-12=0\)
- step1: Move the constant to the right side:
\(3x=0+12\)
- step2: Remove 0:
\(3x=12\)
- step3: Divide both sides:
\(\frac{3x}{3}=\frac{12}{3}\)
- step4: Divide the numbers:
\(x=4\)
Solve the equation \( \frac{\frac{1}{x}-\frac{1}{3}}{x^{2}-9}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\frac{1}{x}-\frac{1}{3}}{x^{2}-9}=0\)
- step1: Divide the terms:
\(-\frac{1}{3x\left(x+3\right)}=0\)
- step2: Rewrite the expression:
\(\frac{-1}{3x\left(x+3\right)}=0\)
- step3: Cross multiply:
\(-1=3x\left(x+3\right)\times 0\)
- step4: Simplify the equation:
\(-1=0\)
- step5: The statement is false:
\(x \in \varnothing \)
Solve the equation \( \frac{\cos(x)-\frac{1}{2}}{x-\frac{\pi}{3}}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\cos\left(x\right)-\frac{1}{2}}{x-\frac{\pi }{3}}=0\)
- step1: Find the domain:
\(\frac{\cos\left(x\right)-\frac{1}{2}}{x-\frac{\pi }{3}}=0,x\neq \frac{\pi }{3}\)
- step2: Divide the terms:
\(\frac{6\cos\left(x\right)-3}{2\left(3x-\pi \right)}=0\)
- step3: Cross multiply:
\(6\cos\left(x\right)-3=2\left(3x-\pi \right)\times 0\)
- step4: Simplify the equation:
\(6\cos\left(x\right)-3=0\)
- step5: Move the constant to the right side:
\(6\cos\left(x\right)=0+3\)
- step6: Remove 0:
\(6\cos\left(x\right)=3\)
- step7: Divide both sides:
\(\frac{6\cos\left(x\right)}{6}=\frac{3}{6}\)
- step8: Divide the numbers:
\(\cos\left(x\right)=\frac{1}{2}\)
- step9: Use the inverse trigonometric function:
\(x=\arccos\left(\frac{1}{2}\right)\)
- step10: Calculate:
\(\begin{align}&x=\frac{\pi }{3}\\&x=\frac{5\pi }{3}\end{align}\)
- step11: Add the period:
\(\begin{align}&x=\frac{\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{5\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step12: Find the union:
\(x=\left\{ \begin{array}{l}\frac{\pi }{3}+2k\pi \\\frac{5\pi }{3}+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step13: Check if the solution is in the defined range:
\(x=\left\{ \begin{array}{l}\frac{\pi }{3}+2k\pi \\\frac{5\pi }{3}+2k\pi \end{array}\right.,k \in \mathbb{Z},x\neq \frac{\pi }{3}\)
- step14: Find the intersection:
\(x=\left\{ \begin{array}{l}\frac{\pi }{3}+2k\pi ,k \in \left(-\infty,0\right),k \in \mathbb{Z}\cup k \in \left(0,+\infty\right),k \in \mathbb{Z}\\\frac{5\pi }{3}+2k\pi ,k \in \left(-\frac{2}{3},+\infty\right),k \in \mathbb{Z}\cup k \in \left(-\infty,-\frac{2}{3}\right),k \in \mathbb{Z}\end{array}\right.\)
Let's evaluate the limits step by step using L'Hospital's Rule where applicable.
### 1. \( \lim _{x \rightarrow 4} \frac{3 x-12}{x^{2}-16} \)
First, substitute \( x = 4 \):
\[
\frac{3(4) - 12}{4^2 - 16} = \frac{0}{0}
\]
This is an indeterminate form, so we apply L'Hospital's Rule:
\[
\lim_{x \to 4} \frac{3}{2x} = \frac{3}{2(4)} = \frac{3}{8}
\]
### 2. \( \lim _{x \rightarrow -4} \frac{2 x^{2}+13 x+20}{x+4} \)
Substituting \( x = -4 \):
\[
\frac{2(-4)^2 + 13(-4) + 20}{-4 + 4} = \frac{32 - 52 + 20}{0} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to -4} \frac{4x + 13}{1} = 4(-4) + 13 = -16 + 13 = -3
\]
### 3. \( \lim _{x \rightarrow 6} \frac{\sqrt{x+10}-4}{x-6} \)
Substituting \( x = 6 \):
\[
\frac{\sqrt{6+10} - 4}{6-6} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 6} \frac{\frac{1}{2\sqrt{x+10}}}{1} = \frac{1}{2\sqrt{16}} = \frac{1}{8}
\]
### 4. \( \lim _{x \rightarrow 0} \frac{\sin 6 x}{4 x} \)
Substituting \( x = 0 \):
\[
\frac{\sin(0)}{0} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 0} \frac{6\cos(6x)}{4} = \frac{6\cos(0)}{4} = \frac{6}{4} = \frac{3}{2}
\]
### 5. \( \lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3} \)
Substituting \( x = 3 \):
\[
\frac{3^2 - 2(3) - 3}{3-3} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 3} \frac{2x - 2}{1} = 2(3) - 2 = 6 - 2 = 4
\]
### 6. \( \lim _{x \rightarrow 0} \frac{\sqrt{25-x^{2}}-5}{x} \)
Substituting \( x = 0 \):
\[
\frac{\sqrt{25-0}-5}{0} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 0} \frac{-\frac{x}{\sqrt{25-x^2}}}{1} = -\frac{0}{5} = 0
\]
### 7. \( \lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x} \)
Substituting \( x = 0 \):
\[
\frac{\sin(0)}{\sin(0)} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 0} \frac{3\cos(3x)}{5\cos(5x)} = \frac{3}{5}
\]
### 8. \( \lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \)
This is the definition of the derivative of \( \sin x \):
\[
\lim_{h \to 0} \frac{\sin (x+h)-\sin x}{h} = \cos x
\]
### 9. \( \lim _{x \rightarrow \infty} \frac{5 x^{2}+3 x-1}{4 x^{2}+5} \)
Dividing numerator and denominator by \( x^2 \):
\[
\lim_{x \to \infty} \frac{5 + \frac{3}{x} - \frac{1}{x^2}}{4 + \frac{5}{x^2}} = \frac{5}{4}
\]
### 10. \( \lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{5 x^{2}} \)
Substituting \( x = 0 \):
\[
\frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 0} \frac{2\sin(2x)\cdot 2\cos(2x)}{10x} = \frac{4\cdot 1}{10} = \frac{2}{5}
\]
### 11. \( \lim _{x \rightarrow 0} \frac{\sin 5 x}{\tan 9 x} \)
Substituting \( x = 0 \):
\[
\frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 0} \frac{5\cos(5x)}{9\sec^2(9x)} = \frac{5}{9}
\]
### 12. \( \lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{\sqrt{x-1}-2} \)
Substituting \( x = 5 \):
\[
\frac{\sqrt{5+4}-3}{\sqrt{5-1}-2} = \frac{3-3}{2-2} = \frac{0}{0}
\]
Applying L'Hospital's Rule:
\[
\lim_{x \to 5} \frac{\frac{1}{2\sqrt{x+4}}}{\frac{1}{2\sqrt{x-1}}} = \frac{\sqrt{4}}{\sqrt{5}} = \frac{2}{\sqrt{5}}
\]
### 13. \( \lim _{x \rightarrow \frac{\pi}{3}} \frac{\cos x-\frac{1}{2}}{x-\frac{\pi}{3}} \)
Substituting \( x