Pregunta
upstudy study bank question image url

A ball is thrown upward from the top of a 200 foot tall building with a velocity of 40 feet per second. Take the positive direction upward and the origin of the coordinate system at ground level. What is the initial value problem for the position, \( x(t) \), of the ball at time \( t \) ? Select the correct answer. \( \frac{d^{2} x}{d t^{2}}=40, x(0)=200, \frac{d x}{d t}(0)=40 \) \( \frac{d^{2} x}{d t^{2}}=-40, x(0)=200, \frac{d x}{d t}(0)=40 \) \( \frac{d^{2} x}{d t^{2}}=32, x(0)=200, \frac{d x}{d t}(0)=40 \) \( \frac{d^{2} x}{d t^{2}}=-32, x(0)=200, \frac{x A}{d t}(0)=40 \) \( \frac{d^{2} x}{d t^{2}}=200, x(0)=32, \frac{d x}{d t}(0)=40 \)

Ask by Summers Hampton. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The initial value problem for the ball's position is: \[ \frac{d^{2} x}{d t^{2}} = -32, \quad x(0) = 200, \quad \frac{dx}{dt}(0) = 40 \]

Solución

To formulate the initial value problem for the position \( x(t) \) of the ball, we need to consider the following: 1. **Acceleration due to gravity**: The ball is thrown upward, and the only force acting on it after it is thrown is gravity, which acts downward. The acceleration due to gravity is approximately \( 32 \, \text{ft/s}^2 \) (downward). Therefore, the second derivative of the position function, which represents acceleration, will be negative: \[ \frac{d^2 x}{dt^2} = -32 \] 2. **Initial position**: The ball is thrown from the top of a 200-foot tall building, so the initial position at time \( t = 0 \) is: \[ x(0) = 200 \] 3. **Initial velocity**: The ball is thrown upward with an initial velocity of 40 feet per second, so the initial velocity at time \( t = 0 \) is: \[ \frac{dx}{dt}(0) = 40 \] Now, we can summarize the initial value problem for the position \( x(t) \): \[ \frac{d^2 x}{dt^2} = -32, \quad x(0) = 200, \quad \frac{dx}{dt}(0) = 40 \] Thus, the correct answer is: \[ \frac{d^{2} x}{d t^{2}}=-32, \, x(0)=200, \, \frac{d x}{d t}(0)=40 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When throwing a ball upward, gravity acts as a constant force in the negative direction, leading to a downward acceleration of approximately \(32 \, \text{ft/s}^2\). Thus, the second derivative of position with respect to time should be negative, which aligns with the motion of the ball. Additionally, the initial height of the ball is \(200\) feet, and the initial velocity is \(40\) feet per second. So, the correct initial value problem for the position of the ball at time \(t\) is: \(\frac{d^{2} x}{d t^{2}}=-32, x(0)=200, \frac{d x}{d t}(0)=40\). It's important to remember that when analyzing motion in physics, always consider how forces like gravity influence the path of a moving object. This foundational concept links to a variety of practical applications, from sports to engineering designs. Additionally, a common mistake people make in problems like this is not accounting for the downward acceleration correctly. Ensure you keep track of the signs associated with the forces acting on the object! This will help you avoid confusion in more complex physics applications too!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad