\( \left. \begin{array} { l } { \frac { d } { d x } \int _ { 0 } ^ { x ^ { 2 } } \frac { d t } { t ^ { 2 } + 3 } } \\ { \frac { d } { d x } \int _ { 0 } ^ { x ^ { 2 } } \frac { d t } { t ^ { 2 } + 3 } = \square } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the problem, we apply the Fundamental Theorem of Calculus along with the chain rule. First, let's denote the integral as \( F(x) = \int_{0}^{x^2} \frac{dt}{t^2 + 3} \). When we differentiate \( F(x) \) with respect to \( x \), we need to consider that the upper limit is a function of \( x \), specifically \( x^2 \). Therefore, by the chain rule: \[ \frac{d}{dx} F(x) = \frac{d}{dx} \int_{0}^{x^2} \frac{dt}{t^2 + 3} = \frac{d}{d(x^2)} \int_{0}^{u} \frac{dt}{t^2 + 3} \cdot \frac{d(x^2)}{dx} \] where \( u = x^2 \). The derivative of \( x^2 \) with respect to \( x \) is \( 2x \). Thus, we have: \[ \frac{d}{dx} F(x) = \frac{1}{(x^2)^2 + 3} \cdot 2x = \frac{2x}{x^4 + 3} \] So the final result is: \[ \frac{d}{dx} \int_{0}^{x^2} \frac{dt}{t^2 + 3} = \frac{2x}{x^4 + 3} \]
