Pregunta
upstudy study bank question image url

\( 61 \% \) of all Americans live in cities with population greater than 100,000 people. It randomly selected, find the probability that a. Exactly 20 of them live in cities with population greater than 100,000 people. b. At most 20 of them live in cities with population greater than 100,000 people. c. At least 19 of them live in cities with population greater than 100,000 people. d. Between 16 and 20 (including 16 and 20) of them live in cities with population greater than 100,000 people.

Ask by Gibson Reid. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The probability that exactly 20 out of 30 Americans live in cities with over 100,000 people is calculated using the binomial probability formula:   P(X = 20) = C(30,20) × (0.61)^20 × (0.39)^10. (b) The probability that at most 20 out of 30 Americans live in cities with over 100,000 people is:   P(X ≤ 20) = Σ (from k = 0 to 20) [C(30,k) × (0.61)^k × (0.39)^(30 – k)]. (c) The probability that at least 19 out of 30 Americans live in cities with over 100,000 people is:   P(X ≥ 19) = Σ (from k = 19 to 30) [C(30,k) × (0.61)^k × (0.39)^(30 – k)]. (d) The probability that between 16 and 20 (including 16 and 20) out of 30 Americans live in cities with over 100,000 people is:   P(16 ≤ X ≤ 20) = Σ (from k = 16 to 20) [C(30,k) × (0.61)^k × (0.39)^(30 – k)].

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To solve these problems, we can model the number of people living in cities with populations greater than 100,000 using the binomial distribution, where \( n \) is the total number of people surveyed, \( p = 0.61 \) is the probability of living in a large city, and \( k \) is the number of people we're interested in. Assuming \( n = 30 \) for this example, we can calculate: a. The probability of exactly 20 people living in such cities can be calculated using the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Substituting \( n = 30 \) and \( k = 20 \) gives: \[ P(X = 20) = \binom{30}{20} (0.61)^{20} (0.39)^{10} \] b. The probability of at most 20 can be found by summing the probabilities from 0 to 20 using: \[ P(X \leq 20) = \sum_{k=0}^{20} P(X = k) \] c. The probability of at least 19 can be calculated similarly: \[ P(X \geq 19) = \sum_{k=19}^{30} P(X = k) \] d. Finally, for the probability between 16 and 20, we sum the probabilities from 16 to 20: \[ P(16 \leq X \leq 20) = \sum_{k=16}^{20} P(X = k) \] Calculating these probabilities would typically require either a binomial table or computational software. By plugging in the numbers or using software, you can find the actual probability values for each scenario! Happy calculating!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad