Pregunta
upstudy study bank question image url

The temperanure, \( H \), in degrees Celsius, of a hos cup of coffee placed on the kifchen counter is given by \( \boldsymbol{I}=\boldsymbol{f}(\boldsymbol{t}) \), where \( \boldsymbol{t} \) is in minutes since the coffee was put on the counter. a. Is \( f^{\prime}(t) \) positive or negurive? \( \square \) \( ? \) b. What are the units of \( f^{\prime}(20) \) ? \( \square \) c. Suppose that \( f^{\prime}(20)=-0.1 \) and \( f(20)=75 \). Fill in the blanks and select the appropriate terms to complete the following statement about the temperature of the coffee in this case. \( \square \) minutes after the coffee was put on the counter, its \( \square \) ? is \( \square \) degrees Celsius and is \( \square \) by \( \square \) degreses Celsins per minute. d. Suppose that \( f^{\prime}(\mathbf{2 0})=-0.1 \). Complete the following notation. d \( \square \) \( \qquad \) \( d \) \( \square \) \( \boldsymbol{t}= \) \( \square \)

Ask by Johnson Guzman. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. \( f^{\prime}(t) \) is negative. b. The units of \( f^{\prime}(20) \) are degrees Celsius per minute. c. 20 minutes after the coffee was put on the counter, its temperature is 75 degrees Celsius and is decreasing by 0.1 degrees Celsius per minute. d. \( dH = -0.1 \, dt \).

Solución

Let's break down the problem step by step. ### a. Is \( f^{\prime}(t) \) positive or negative? The function \( f(t) \) represents the temperature of the coffee over time. As the coffee cools down, we expect its temperature to decrease. Therefore, the derivative \( f^{\prime}(t) \), which represents the rate of change of temperature with respect to time, will be negative. **Answer:** \( f^{\prime}(t) \) is negative. ### b. What are the units of \( f^{\prime}(20) \)? The derivative \( f^{\prime}(t) \) represents the rate of change of temperature with respect to time. Since temperature \( H \) is measured in degrees Celsius and time \( t \) is measured in minutes, the units of \( f^{\prime}(t) \) will be: \[ \text{Units of } f^{\prime}(t) = \frac{\text{degrees Celsius}}{\text{minutes}} \] **Answer:** The units of \( f^{\prime}(20) \) are degrees Celsius per minute. ### c. Fill in the blanks based on \( f^{\prime}(20) = -0.1 \) and \( f(20) = 75 \). Given: - \( f(20) = 75 \) degrees Celsius (the temperature of the coffee at \( t = 20 \) minutes). - \( f^{\prime}(20) = -0.1 \) (the rate of change of temperature at \( t = 20 \) minutes). Now we can fill in the blanks: - \( 20 \) minutes after the coffee was put on the counter, its **temperature** is \( 75 \) degrees Celsius and is **decreasing** by \( 0.1 \) degrees Celsius per minute. **Answer:** - \( 20 \) minutes after the coffee was put on the counter, its **temperature** is \( 75 \) degrees Celsius and is **decreasing** by \( 0.1 \) degrees Celsius per minute. ### d. Complete the following notation. Given \( f^{\prime}(20) = -0.1 \), we can express the change in temperature over a small change in time \( dt \): \[ dH = f^{\prime}(20) \cdot dt \] Substituting the value of \( f^{\prime}(20) \): \[ dH = -0.1 \cdot dt \] This means that for a small change in time \( dt \), the change in temperature \( dH \) will be \( -0.1 \) times that change in time. **Answer:** - \( dH = -0.1 \, dt \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The temperature of your freshly brewed coffee is a classic example of Newton's Law of Cooling, where hot objects lose heat to their surroundings. Typically, as time passes, this cooling effect leads to a decrease in temperature. Since \( f^{\prime}(t) \) represents the rate of change of temperature with respect to time, it’s safe to say that \( f^{\prime}(t) \) is negative, indicating a decline in heat. Now, let’s dive into the units! When considering \( f^{\prime}(20) \), which measures how quickly the temperature is changing at minute 20, the units will be degrees Celsius per minute (°C/min). This shows us the rate at which the coffee cools down; in your case, a drop of 0.1°C each minute!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad