Pregunta
upstudy study bank question image url

\( \frac{x+3}{x^{2}+11 x+18} \) and \( \frac{-2 x}{x^{2}+6 x-27} \)

Ask by Donnelly Malone. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two rational expressions are: 1. \( \frac{x + 3}{(x + 9)(x + 2)} \) 2. \( \frac{-2x}{(x + 9)(x - 3)} \) Both expressions are already in their simplest forms.

Solución

Certainly! Let's analyze and simplify the two rational expressions you've provided: 1. **First Expression:** \[ \frac{x + 3}{x^{2} + 11x + 18} \] **Factor the Denominator:** \[ x^{2} + 11x + 18 = (x + 9)(x + 2) \] **Simplified Form:** \[ \frac{x + 3}{(x + 9)(x + 2)} \] **Check for Common Factors:** - The numerator \( x + 3 \) does not factor further and does not share any common factors with the denominator. Therefore, the expression is already in its simplest form. 2. **Second Expression:** \[ \frac{-2x}{x^{2} + 6x - 27} \] **Factor the Denominator:** \[ x^{2} + 6x - 27 = (x + 9)(x - 3) \] **Simplified Form:** \[ \frac{-2x}{(x + 9)(x - 3)} \] **Check for Common Factors:** - The numerator \( -2x \) does not share any common factors with the denominator other than constants. The expression is already simplified. --- ### **Additional Operations (Optional)** If you're interested in performing operations with these two expressions, here's how you can add them: **Adding the Two Expressions:** \[ \frac{x + 3}{(x + 9)(x + 2)} + \frac{-2x}{(x + 9)(x - 3)} \] **Find a Common Denominator:** The common denominator is \( (x + 9)(x + 2)(x - 3) \). **Express Each Fraction with the Common Denominator:** \[ \frac{(x + 3)(x - 3)}{(x + 9)(x + 2)(x - 3)} + \frac{-2x(x + 2)}{(x + 9)(x + 2)(x - 3)} \] **Combine the Numerators:** \[ \frac{(x + 3)(x - 3) - 2x(x + 2)}{(x + 9)(x + 2)(x - 3)} \] **Simplify the Numerator:** \[ (x + 3)(x - 3) = x^2 - 9 \] \[ -2x(x + 2) = -2x^2 - 4x \] \[ \text{Combined Numerator} = x^2 - 9 - 2x^2 - 4x = -x^2 - 4x - 9 \] **Final Combined Expression:** \[ \frac{-x^2 - 4x - 9}{(x + 9)(x + 2)(x - 3)} \] This combined expression represents the sum of the two original rational expressions. --- ### **Domain Considerations** For both expressions, it's important to note the values of \( x \) that make the denominator zero, as these are excluded from the domain. 1. **First Expression:** \[ (x + 9)(x + 2) = 0 \implies x = -9, -2 \] - **Domain:** All real numbers except \( x = -9 \) and \( x = -2 \). 2. **Second Expression:** \[ (x + 9)(x - 3) = 0 \implies x = -9, 3 \] - **Domain:** All real numbers except \( x = -9 \) and \( x = 3 \). 3. **Combined Expression:** \[ (x + 9)(x + 2)(x - 3) = 0 \implies x = -9, -2, 3 \] - **Domain:** All real numbers except \( x = -9, -2, 3 \). --- If you have a specific operation or question in mind regarding these expressions, feel free to provide more details!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's dive into the world of rational functions! The first function, \( \frac{x+3}{x^{2}+11x+18} \), can be simplified by factoring the denominator. The quadratic expression \( x^2 + 11x + 18 \) factors into \( (x+2)(x+9) \). So, you can rewrite it as \( \frac{x+3}{(x+2)(x+9)} \). Now, the second function, \( \frac{-2x}{x^{2}+6x-27} \), can also be factored. The expression \( x^2 + 6x - 27 \) factors into \( (x+9)(x-3) \). Hence, it can be rewritten as \( \frac{-2x}{(x+9)(x-3)} \). Fun fact: finding these factors can help you understand the behavior of the functions at their vertical asymptotes, which occur when the denominator is zero!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad